Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insects ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276823

RESUMO

Understanding the factors associated with the species diversity and distribution of insect vectors is critically important for disease epidemiology. Black flies (Diptera: Simuliidae) are significant hematophagous insects, as many species are pests and vectors that transmit pathogens to humans and other animals. Ecological factors associated with black fly species distribution have been extensively examined for the immature stages but are far less well explored for the adult stage. In this study, we collected a total of 7706 adult black fly specimens from various locations in forests, villages and animal shelters in Thailand. The integration of morphology and DNA barcoding revealed 16 black fly taxa, including Simulium yvonneae, a species first found in Vietnam, which is a new record for Thailand. The most abundant species was the Simulium asakoae complex (n = 5739, 74%), followed by S. chumpornense Takaoka and Kuvangkadilok (n = 1232, 16%). The Simulium asakoae complex was dominant in forest (3786 of 4456; 85%) and village (1774 of 2077; 85%) habitats, while S. chumpornense predominated (857 of 1175; 73%) in animal shelter areas. The Simulium asakoae complex and S. nigrogilvum Summers, which are significant pests and vectors in Thailand, occurred at a wide range of elevations, although the latter species was found mainly in high (>1000 m) mountain areas. Simulium chumpornense, S. nodosum Puri and the S. siamense Takaoka and Suzuki complex occurred predominately in low (<800 m)-elevation areas. Simulium furvum Takaoka and Srisuka; S. phurueaense Tangkawanit, Wongpakam and Pramual; and S. nr. phurueaense were only found in high (>1000 m) mountain areas. A host blood meal analysis revealed that the S. asakoae; S. chamlongi Takaoka and Suzuki; S. nigrogilvum; S. chumpornense; and the S. striatum species group were biting humans. This is the first report of the latter two species biting humans. We also found that S. chumpornense was biting turkeys, and S. chamlongi was biting chickens, which are new host blood sources recorded for these species. In addition, we found that the S. feuerborni Edwards complex was biting water buffalo, which is the first report on the biting habits of this species.

2.
Insects ; 15(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786902

RESUMO

Two species of black flies (Simuliidae) in Thailand, Simulium chumpornense Takaoka and Kuvangkadilok, 2000, and S. khelangense Takaoka, Srisuka & Saeung, 2022, are potent vectors of avian blood protozoa of the genera Leucocytozoon and Trypanosoma and are pests of domestic avian species. Although the adults are abundant throughout Thailand, information on their breeding habitats is limited, and the immature stages of S. khelangense are unknown. We collected the larvae and pupae of S. khelangense from the Mekong River, the first-ever record of Simuliidae from this large continental river. Mitochondrial cytochrome c oxidase I and internal transcribed spacer 2 were used to associate the larvae and pupae with known adults. Both genetic markers strongly supported their identity as S. khelangense. The larvae and pupa of S. khelangense are described. The pupal gill filaments, larval abdominal protuberances, and setae distinguish this species from other members of the S. varicorne species group. The immature stages of S. chumpornense inhabit a wide variety of flowing waters, from small streams (3 m wide) to enormous continental rivers (400 m wide); thus, S. chumpornense is a habitat generalist. In contrast, S. khelangense was found only in the large Mekong River and is, therefore, a habitat specialist. Both species can exploit their principal habitats and produce abundant adult populations.

3.
Acta Trop ; 254: 107207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579961

RESUMO

Species of the Simulium varicorne group in Thailand have veterinary significance as vectors of haemosporidian parasites. Accurate identification is, therefore, critical to the study of vectors and parasites. We used morphology and molecular markers to investigate cryptic genetic lineages in samples identified as Simulium chumpornense Takaoka & Kuvangkadilok, 2000. We also tested the efficiency of the nuclear internal transcribed spacer 2 (ITS2) marker for the identification of species in this group. Morphological examinations revealed that S. chumpornense lineage A is most similar to S. khelangense Takaoka, Srisuka & Saeung, 2022, with minor morphological differences. They are also genetically similar based on mitochondrial cytochrome c oxidase I (COI) sequences. Geographically, the sampling site where paratypes of S. khelangense were originally collected is <50 km from where S. chumpornense lineage A was collected. We concluded that cryptic lineage A of S. chumpornense is actually S. khelangense. COI sequences could not differentiate S. kuvangkadilokae Pramual and Tangkawanit, 2008 from S. chumpornense and S. khelangense. In contrast, ITS2 sequences provided perfect accuracy in the identification of these species. Molecular analyses of the blood protozoa Leucocytozoon and Trypanosoma demonstrated that S. khelangense carries L. shoutedeni, Leucocytozoon sp., and Trypanosoma avium. The Leucocytozoon sp. in S. khelangense differs genetically from that in S. asakoae Takaoka & Davies, 1995, signaling the possibility of vector-parasite specificity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Filogenia , Simuliidae , Animais , Simuliidae/parasitologia , Simuliidae/genética , Simuliidae/classificação , Tailândia , Complexo IV da Cadeia de Transporte de Elétrons/genética , DNA de Protozoário/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Haemosporida/genética , Haemosporida/isolamento & purificação , Haemosporida/classificação
4.
Insects ; 14(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504581

RESUMO

Biting midges of the genus Culicoides Latreille are significant pests and vectors that transmit pathogens to humans and other animals. Cattle are among the important livestock that can potentially be severely affected by Culicoides. In this study, we examined the species diversity, abundance, and host blood meal identification of biting midges in cattle pens located in three different land use types: villages, agricultural areas, and the forest edge. A total of 12,916 biting midges were collected, and most of these were from cattle pens located in villages (34%) and agricultural land (52%). Morphological identification revealed 29 Culicoides species. The most common species were C. oxystoma, C. mahasarakhamense, C. peregrinus, and C. shortti; taken together, these species represented >80% of all specimens collected. Despite midges being less numerous (14% of the total collection), cattle pens located near the forest showed greater diversity (23) than those from villages and agricultural areas. More diverse immature habitats and host blood sources from wildlife in nearby forests possibly explain the greater diversity in the cattle pens near the forest edge. Host blood meal analysis revealed that most (65%) biting midges had fed on buffalo despite the fact that this animal was much less numerous than cows or chickens. Relatively larger size and black-colored skin could be factors that make buffalo more attractive to biting midges than other host species. In this study, we also provided 67 DNA barcoding sequences of 13 species, three of which (C. flaviscutatus, C. geminus, and C. suzukii) were first reported from Thai specimens. DNA barcode analysis indicated cryptic diversity within C. hegneri and C. flavescens in Thailand, and thus, further investigation is required to resolve their species status.

5.
Insects ; 13(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005350

RESUMO

Biting midges of the genus Culicoides Latreille are significant pests and vectors of disease agents transmitted to humans and other animals. Understanding the genetic structure and diversity of these insects is crucial for effective control programs. This study examined the genetic diversity, genetic structure, and demographic history of Culicoides mahasarakhamense, a possible vector of avian haemosporidian parasites and Leishmania martiniquensis, in Thailand. The star-like shape of the median joining haplotype network, a unimodal mismatch distribution, and significant negative values for Tajima's D and Fu's FS tests indicated that populations had undergone recent expansion. Population expansion time was estimated to be 2000-22,000 years ago. Population expansion may have been triggered by climatic amelioration from cold/dry to warm/humid conditions at the end of the last glaciations, resulting in the increased availability of host blood sources. Population pairwise FST revealed that most (87%) comparisons were not genetically different, most likely due to a shared recent history. The exception to the generally low level of genetic structuring is a population from the northern region that is genetically highly different from others. Population isolation in the past and the limitation of ongoing gene flows due to large geographic distance separation are possible explanations for genetic differentiation.

6.
Genetica ; 135(1): 51-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18320331

RESUMO

The objectives of this study were to explore cytogenetic variation and the role of chromosomal change on local adaptation and genetic differentiation of Chironomus circumdatus Kieffer from Thailand. A total of 1,505 larvae from 24 populations were examined cytologically. Twelve chromosomal inversions were found and most of these (9 of 12) were rare inversions. All populations were in Hardy-Weinberg equilibrium. Significant association (P < 0.001) between the A2 and B5 inversions was detected in one population. Population genetic structure analysis indicated significant genetic differentiation between populations (F (ST) = 0.037, P < 0.001). Geographic distance was the principal factor limiting gene flow between populations. Nei's modified genetic distance (D (A)) between populations ranged from 0.001 to 0.011 with an average of 0.003. An UPGMA population phenogram depicting relationship between populations based on D (A) values revealed three groups of populations, group I, II and III each characterized by different inversions/inversion frequencies. Significant correlation of inversion C3 and water temperature suggested that this inversion might have a role to play on adaptation to high temperature habitat. However, if detection of significant population subdivision and relationship between genetic and geographic distance are taken into account, relationship between C3 and water temperature will also be due to the effect of migration/drift alone without the effect of selection.


Assuntos
Adaptação Biológica/genética , Chironomidae/genética , Inversão Cromossômica , Animais , Cromossomos , Frequência do Gene , Deriva Genética , Cariotipagem , Larva/genética , Desequilíbrio de Ligação , Filogenia , Polimorfismo Genético , Seleção Genética , Temperatura , Tailândia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA