Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hippocampus ; 31(5): 512-521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33580728

RESUMO

Sodium salicylate, one of the non-steroidal anti-inflammatory drugs, is widely prescribed in the clinic, but a high dose of usage can cause hyperactivity in the central nervous system, including the hippocampus. At present, the neural mechanism underlying the induced hyperactivity is not fully understood, in particular, in the hippocampus under an in vivo condition. In this study, we found that systemic administration of sodium salicylate increased the field excitatory postsynaptic potential slope and the population spike amplitude in a dose-dependent manner in the hippocampal dentate gyrus area of rats with in vivo field potential extracellular recordings, which indicates that sodium salicylate enhances basal synaptic transmission and neural excitation. In the presence of picrotoxin, a GABA-A receptor antagonist, sodium salicylate failed to increase the initial slope of the field excitatory postsynaptic potential and the amplitude of the population spike in vivo. To further explore how sodium salicylate enhances the neural excitation, we made whole-cell patch-clamp recordings from hippocampal slices. We found that perfusion of the slice with sodium salicylate decreased electrically evoked GABA receptor-mediated currents, increased paired-pulse ratio, and lowered frequency and amplitude of miniature inhibitory postsynaptic currents. Together, these results demonstrate that sodium salicylate enhances the neural excitation through suppressing GABAergic synaptic transmission in presynaptic and postsynaptic mechanisms in the hippocampal dentate gyrus area. Our findings may help understand the side effects caused by sodium salicylate in the central nervous system.


Assuntos
Hipocampo , Salicilato de Sódio , Animais , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Ratos , Salicilato de Sódio/farmacologia , Transmissão Sináptica/fisiologia
2.
Cell Host Microbe ; 31(8): 1301-1316.e8, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527659

RESUMO

Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
ACS Infect Dis ; 8(12): 2586-2593, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357959

RESUMO

The ongoing coronavirus disease 2019 pandemic has raised concerns about the risk of re-infection. Non-neutralizing epitopes are one of the major reasons for antibody-dependent enhancement. Past studies on the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed an infectivity-enhancing site on the ancestral SARS-CoV-2 spike protein. However, infection enhancement associated with the SARS-CoV-2 Omicron strain remains elusive. In this study, we examined the antibodies induced by a multiple epitope-based vaccine, which showed infection enhancement for the Omicron strain but not for the ancestral SARS-CoV-2 or Delta strain. By examining the antibodies induced by single epitope-based vaccines, we identified a conserved epitope, IDf (450-469), with neutralizing activity against ancestral SARS-CoV-2, Delta, and Omicron. Although neutralizing epitopes are present in the multiple epitope-based vaccine, other immunodominant non-neutralizing epitopes such as IDg (480-499) can shade their neutralizing activity, leading to infection enhancement of Omicron. Our study provides up-to-date epitope information on SARS-CoV-2 variants to help design better vaccines or antibody-based therapeutics against future variants.


Assuntos
COVID-19 , Vacinas , Humanos , Epitopos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , Epitopos Imunodominantes
4.
Acta Biomater ; 148: 133-141, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697200

RESUMO

Microneedles can realize the intradermal and transdermal delivery of drugs. However, most conventional microneedles made of metal, polymer and ceramics are unsuitable for the delivery of mRNA drugs that are fragile and temperature-sensitive. This study explores the usage of cryomicroneedles (CryoMNs) for the intradermal delivery of mRNA molecules. Taking luciferase mRNA as an example, we first optimize the formulation of CryoMNs to maximize mRNA stability. Later, in the mouse model, we compare the delivery efficiency with the conventional subcutaneous injection for both the luciferase mRNA and COVID-19 Comirnaty mRNA vaccines, where CryoMNs delivered mRNA vaccines successfully induce specific B-cell antibody, neutralizing activity and T-cell responses. STATEMENT OF SIGNIFICANCE: mRNA vaccines are fragile and temperature-sensitive, so they are mainly delivered by intramuscular injection that often causes pain and requires clinical expertise to immunize patients. Microneedles permit convenient, fast and safe vaccination. However, existing microneedle platforms are ineffective to protect the integrity of mRNA vaccines in fabrication, storage, and administration. This work utilizes cryomicroneedles (CryoMNs) technology to intradermally deliver mRNA. In the mouse model, CryoMNs are compared with the subcutaneous injection for the delivery efficiency of both the luciferase mRNA and COVID-19 Comirnaty mRNA vaccines, where CryoMNs delivered mRNA vaccines successfully produce specific B-cell antibodies, T-cell responses, and neutralizing activity. This work is expected to provide a new delivery strategy for the emerging mRNA therapeutics.


Assuntos
COVID-19 , Animais , COVID-19/prevenção & controle , Sistemas de Liberação de Medicamentos , Injeções Intradérmicas , Camundongos , Agulhas , RNA Mensageiro/genética , Vacinação
5.
Front Immunol ; 13: 861050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401572

RESUMO

It has been reported that multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) including Alpha, Beta, Gamma, and Delta can reduce neutralization by antibodies, resulting in vaccine breakthrough infections. Virus-antiserum neutralization assays are typically performed to monitor potential vaccine breakthrough strains. However, experiment-based methods took several weeks whether newly emerging variants can break through current vaccines or therapeutic antibodies. To address this, we sought to establish a computational model to predict the antigenicity of SARS-CoV-2 variants by sequence alone. In this study, we firstly identified the relationship between the antigenic difference transformed from the amino acid sequence and the antigenic distance from the neutralization titers. Based on this correlation, we obtained a computational model for the receptor-binding domain (RBD) of the spike protein to predict the fold decrease in virus-antiserum neutralization titers with high accuracy (~0.79). Our predicted results were comparable to experimental neutralization titers of variants, including Alpha, Beta, Delta, Gamma, Epsilon, Iota, Kappa, and Lambda, as well as SARS-CoV. Here, we predicted the fold of decrease of Omicron as 17.4-fold less susceptible to neutralization. We visualized all 1,521 SARS-CoV-2 lineages to indicate variants including Mu, B.1.630, B.1.633, B.1.649, and C.1.2, which can induce vaccine breakthrough infections in addition to reported VOCs Beta, Gamma, Delta, and Omicron. Our study offers a quick approach to predict the antigenicity of SARS-CoV-2 variants as soon as they emerge. Furthermore, this approach can facilitate future vaccine updates to cover all major variants. An online version can be accessed at http://jdlab.online.


Assuntos
Antígenos Virais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Soros Imunes , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35446790

RESUMO

SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacina BCG , COVID-19/prevenção & controle , Humanos , Melfalan , Camundongos , gama-Globulinas
7.
J Immunol Res ; 2021: 5531220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056008

RESUMO

The nucleocapsid protein (NP) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains immunogenic epitopes that can induce cytotoxic T lymphocyte (CTL) against viral infection. This makes the nucleocapsid protein a suitable candidate for developing a vaccine against SARS-CoV-2 infection. This article reports the intradermal delivery of NP antigen using dissolvable microneedle skin patches that could induce both significant B cell and T cell responses.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos B/imunologia , Vacinas contra COVID-19/administração & dosagem , Proteínas do Nucleocapsídeo de Coronavírus/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Injeções Intradérmicas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/administração & dosagem , Fosfoproteínas/imunologia
8.
Bioeng Transl Med ; 6(1): e10202, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349797

RESUMO

The S1 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein contains an immunogenic receptor-binding domain (RBD), which is a promising candidate for the development of a potential vaccine. This study demonstrated that intradermal delivery of an S-RBD vaccine using a dissolvable microneedle skin patch can induce both significant B-cell and significant T-cell responses against S-RBD. Importantly, the outcomes were comparable to that of conventional bolus injection.

9.
EBioMedicine ; 70: 103505, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34332295

RESUMO

BACKGROUND: Staphylococcus aureus is a common human pathogen capable of causing diverse illnesses with possible recurrent infections. Although recent studies have highlighted the role of cellular immunity in recurrent infections, the mechanism by which S. aureus evades host responses remains largely unexplored. METHODS: This study utilizes in vitro and in vivo infection experiments to investigate difference of pro-inflammatory responses and subsequent adaptive immune responses between adsA mutant and WT S. aureus strain infection. FINDINGS: We demonstrated that adenosine synthase A (AdsA), a potent S. aureus virulence factor, can alter Th17 responses by interfering with NLRP3 inflammasome-mediated IL-1ß production. Specifically, S. aureus virulence factor AdsA dampens Th1/Th17 immunity by limiting the release of IL-1ß and other Th polarizing cytokines. In particular, AdsA obstructs the release of IL-1ß via the adenosine/A2aR/NLRP3 axis. Using a murine infection model, pharmacological inhibition of A2a receptor enhanced S. aureus-specific Th17 responses, whereas inhibition of NLRP3 and caspase-1 downregulated these responses. Our results showed that AdsA contributes to recurrent S. aureus infection by restraining protective Th1/Th17 responses. INTERPRETATION: Our study provides important mechanistic insights for therapeutic and vaccination strategies against S. aureus infections. FUNDING: This work was supported by grants from Shenzhen Peacock project (KQTD2015033-117210153), and Guangdong Science and Technology Department (2020B1212030004) to J.H. and China Postdoctoral Science Foundation (2019M663167) to BZZ. We also thank the L & T Charitable Foundation, the Guangdong Science and Technology Department (2020B1212030004), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019BT02Y198) for their support.


Assuntos
Proteínas de Bactérias/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/enzimologia , Fatores de Virulência/imunologia , Adenosina/biossíntese , Animais , Células Cultivadas , Feminino , Humanos , Evasão da Resposta Imune , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor A2A de Adenosina/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Células THP-1 , Células Th17/imunologia
10.
Emerg Microbes Infect ; 10(1): 874-884, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890550

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Cricetinae , Feminino , Células HEK293 , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
11.
Cell Discov ; 4: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30603101

RESUMO

Kif5b-driven anterograde transport and clathrin-mediated endocytosis (CME) are responsible for opposite intracellular trafficking, contributing to plasma membrane homeostasis. However, whether and how the two trafficking processes coordinate remain unclear. Here, we show that Kif5b directly interacts with clathrin heavy chain (CHC) at a region close to that for uncoating catalyst (Hsc70) and preferentially localizes on relatively large clathrin-coated vesicles (CCVs). Uncoating in vitro is decreased for CCVs from the cortex of kif5b conditional knockout (mutant) mouse and facilitated by adding Kif5b fragments containing CHC-binding site, while cell peripheral distribution of CHC or Hsc70 keeps unaffected by Kif5b depletion. Furthermore, cellular entry of vesicular stomatitis virus that internalizes into large CCV is inhibited by Kif5b depletion or introducing a dominant-negative Kif5b fragment. These findings showed a new role of Kif5b in regulating large CCV-mediated CME via affecting CCV uncoating, indicating Kif5b as a molecular knot connecting anterograde transport to CME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA