Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 76(11): 2875-2883, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34383928

RESUMO

OBJECTIVES: Ceftazidime/avibactam is not active against MBL-producing bacteria. Combining ceftazidime/avibactam or avibactam with aztreonam can counter the resistance of MBL-producing Enterobacterales. The aim of this study was to evaluate whether the addition of avibactam could reduce or close the mutant selection window (MSW) of aztreonam in Escherichia coli and Klebsiella pneumoniae harbouring MBLs; MSW is a pharmacodynamic (PD) parameter for the selection of emergent resistant mutants. METHODS: In vitro susceptibility of 19 clinical isolates to ceftazidime/avibactam, aztreonam alone, and in co-administration (aztreonam/ceftazidime/avibactam and aztreonam/avibactam) was determined, as well as the mutant prevention concentration (MPC). The fraction of time within 24 h that the free drug concentration was within the MSW (fTMSW) and the fraction of time that the free drug concentration was above the MPC (fT>MPC) in both plasma and epithelial lining fluid (ELF) were determined from simulations of 10 000 profiles. The joint PTA was used to derive a joint cumulative fraction of response (CFR). RESULTS: All isolates were resistant to ceftazidime/avibactam or aztreonam. Combining aztreonam and avibactam or ceftazidime/avibactam resulted in synergistic bactericidal activities against all isolates. Synergism was primarily due to the aztreonam/avibactam combination. For aztreonam/avibactam dosing regimens evaluated in clinical trials, fT>MPC values were >90% and >80%, whereas fTMSW measures were <10% and <20% in plasma and ELF, respectively. The CFR was 100% for aztreonam/avibactam against the collection of clinical isolates. CONCLUSIONS: Effective antimicrobial combination optimized the PD parameters measuring selection for emergent mutants by increasing fT>MPC and reducing fTMSW.


Assuntos
Aztreonam , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Serina , beta-Lactamases/genética
2.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475382

RESUMO

Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of ß-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The ß-phase of the PVDF piezoelectric material generates an electron-hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal.

3.
ACS Appl Mater Interfaces ; 15(51): 59989-60001, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085924

RESUMO

Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.


Assuntos
Hipertelorismo , Hipospadia , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Simulação por Computador , Umidade
4.
Int J Biol Macromol ; 167: 1479-1490, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33221270

RESUMO

In this study, a versatile method for the manufacturing of chitosan-grafted porous poly (L-lactic acid) (P-PLLA) nanofibrous membrane by using polydopamine (PDA) as an intermediate layer has been developed. P-PLLA fibres were electrospun and collected as nano/micro fibrous membranes. Highly porous fibres could serve as a substrate for chitosan to adsorb heavy metal ions. Moreover, PDA was used to modify P-PLLA surface to increase the coating uniformity and stability of chitosan. Due to the very high surface area of P-PLLA membranes and abundant amine groups of both PDA and chitosan, the fabricated membranes were utilized as adsorbent for removal of copper (Cu2+) ions from the wastewater. The adsorption capability of Cu2+ ions was examined with respect to the PDA polymerization times, pH, initial metal ion concentration and time. Finally, the equilibrium adsorption data of chitosan-grafted membranes fitted well with the Langmuir isotherm with the maximum adsorption capacity of 270.27 mg/g.


Assuntos
Quitosana/química , Indóis/química , Metais Pesados/química , Nanofibras/química , Poliésteres/química , Polímeros/química , Purificação da Água/métodos , Adsorção , Cobre/química , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Microscopia Eletrônica de Varredura , Modelos Estatísticos , Nanofibras/ultraestrutura , Porosidade , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Difração de Raios X
5.
Mater Sci Eng C Mater Biol Appl ; 117: 111359, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919696

RESUMO

Electrospinning has been widely used to fabricate polymer fibrous scaffolds for bone tissue engineering because of their highly porous structures. In order to improve the biocompatibility of polymer scaffolds, some nano particles have been introduced into electrospun fibres. For example, silica nanoparticles (SiNPs), with high surface area and good biocompatibility, have been used for bone tissue engineering for better bone cell attachment. In this work, porous poly(L-lactic acid) (PLLA) fibrous membrane with high surface area was fabricated by electrospinning and post-treatment process. The membrane can serve as substrates of SiNPs for bone tissue engineering. Dopamine (DOP) was applied to modify the surface of PLLA fibres, which improved the coating strength of SiNPs on PLLA fibres. SiNP coating significantly improved the mechanical properties and hydrophilicity of PLLA/DOP/SiNP composite membranes. As a result of SiNPs coating, PLLA/DOP/SiNP membrane exhibited better cellular biocompatibility, more cell attachment and proliferation. These results demonstrate that porous PLLA/DOP/SiNP composite membrane with high surface area has high potential for periosteum in the field of bone regeneration applications.


Assuntos
Dopamina , Dióxido de Silício , Regeneração Óssea , Proliferação de Células , Ácido Láctico , Poliésteres , Porosidade , Engenharia Tecidual , Alicerces Teciduais
6.
Carbohydr Polym ; 227: 115343, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590883

RESUMO

Porous poly(L-lactic acid) (PLLA) nanofibrous membrane with the high surface area was developed by electrospinning and post acetone treatment and used as a substrate for deposition of chitosan. Chitosan was coated onto porous nanofibrous membrane via direct immersion coating method. The porous PLLA/chitosan structure provided chitosan a high surface framework to fully and effectively adsorb heavy metal ions from water and showed higher and faster ion adsorption. The composite membrane was used to eliminate copper ions from aqueous solutions. Chitosan acts as an adsorbent due to the presence of aminic and hydroxide groups which are operating sites for the capture of copper ions. The maximum adsorption capacity of copper ions reached 111.66 ± 3.22 mg/g at pH (7), interaction time (10 min) and temperature (25 °C). The adsorption kinetics of copper ions was established and was well agreed with the second-order model and Langmuir isotherm. Finally, the thermodynamic parameters were studied.

7.
ACS Appl Mater Interfaces ; 11(43): 40592-40601, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31593425

RESUMO

Particulate matter (PM) poses a threat to people's living environment. Fresh air ventilation systems can filter particulate matter and play an important role in enhancing indoor air quality. A high filtration efficiency material with low pressure drop prolongs the service life of the filters and reduces energy consumption. However, maintaining the long-term storage of charge in electret materials remains a challenge. Herein, we report a novel sheath/core bicomponent spunbond (BCS) electret material with low pressure drop and improved charge stability using polyethylene/polypropylene (PE/PP) as the matrix polymer and magnesium stearate (MgSt) as the charge enhancer. Benefiting from the three-dimensional (3D) fluffy structure created by the spunbond technique and through-air reinforcement, the resulting electret materials exhibit a low pressure drop of 37.92 Pa, excellent dust holding capacity of 10.87 g m-2, and high filtration efficiency of 98.94%. Moreover, due to the introduction of MgSt, the filtration efficiency only decreased by 4.1% in 90 days. The successful fabrication of PE/PP BCS materials with MgSt not only provided a promising medium for particle capture but also developed a new approach for the design of fresh air filtration materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA