Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(7): 906-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652334

RESUMO

BACKGROUND: The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution. METHODS: This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 µm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1-30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses. RESULTS: We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%-91%) of the sphingolipids were also observed in 30-day time window. CONCLUSIONS: Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aterosclerose , Apolipoproteínas B , Aterosclerose/etiologia , LDL-Colesterol , Exposição Ambiental , Humanos , Pessoa de Meia-Idade , Material Particulado , Estudos Prospectivos , Esfingolipídeos
2.
Environ Sci Technol ; 57(13): 5349-5357, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959739

RESUMO

Nitrogen dioxide (NO2) is associated with mortality and many other adverse health outcomes. In 2021, the World Health Organization established a new NO2 air quality guideline (AQG) (annual average <10 µg/m3). However, the burden of diseases attributable to long-term NO2 exposure above the AQG is unknown in China. Nitrogen oxide is a major air pollutant in populous cities, which are disproportionately impacted by NO2; this represents a form of environmental inequality. We conducted a nationwide risk assessment of premature deaths attributable to long-term NO2 exposure from 2013 to 2020 based on the exposure-response relationship, high-resolution annual NO2 concentrations, and gridded population data (considering sex, age, and residence [urban vs rural]). We calculated health metrics including attributable deaths, years of life lost (YLL), and loss of life expectancy (LLE). Inequality in the distribution of attributable deaths and YLLs was evaluated by the Lorenz curve and Gini index. According to the health impact assessments, in 2013, long-term NO2 exposure contributed to 315,847 (95% confidence interval [CI]: 306,709-319,269) premature deaths, 7.90 (7.68-7.99) million YLLs, and an LLE of 0.51 (0.50-0.52) years. The high-risk subgroup (top 20%) accounted for 85.7% of all NO2-related deaths and 85.2% of YLLs, resulting in Gini index values of 0.81 and 0.67, respectively. From 2013 to 2020, the estimated health impact from NO2 exposure was significantly reduced, but inequality displayed a slightly increasing trend. Our study revealed a considerable burden of NO2-related deaths in China, which were disproportionally frequent in a small high-risk subgroup. Future clean air initiatives should focus not only on reducing the average level of NO2 exposure but also minimizing inequality.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Disparidades nos Níveis de Saúde , Dióxido de Nitrogênio , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , População do Leste Asiático , Exposição Ambiental/análise , Óxido Nítrico , Dióxido de Nitrogênio/análise , Material Particulado/análise
3.
Anal Bioanal Chem ; 415(3): 411-425, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370204

RESUMO

Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 µL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
4.
Environ Health ; 22(1): 65, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37705052

RESUMO

BACKGROUNDS: The vulnerability of fetuses differs at different developmental stages, in response to environmental stressors such as fine particulate matter (PM2.5), a ubiquitous air pollutant. Whether gestational age (GA) modifies the association between prenatal fine particulate matter (PM2.5) exposure and fetal death remains unclear. METHODS: We selected approximately 47.8 million eligible United States (US) livebirth and fetal death (defined as a termination at a GA of 20-43 weeks) records from 1989 to 2004. For each record, we took the level of prenatal exposure to PM2.5 as the average concentration in the mother's residential county during the entire gestational period, or a specific trimester (i.e., GA-specific exposure), according to well-established estimates of monthly levels across the contiguous US. First, we evaluated the associations between PM2.5 exposure and fetal death at a specific GA (i.e., GA-specific outcome) using five different logit models (unadjusted, covariate-adjusted, propensity-score, double robust, and diagnostic-score models). Double robust model was selected as the main model due to its advantages in causal inference. Then, we conducted meta-analyses to pool the estimated GA-specific associations, and explored how the pooled estimates varied with GA. RESULTS: According to the meta-analysis, all models suggested gestational PM2.5 exposure was associated with fetal death. However, there was slight heterogeneity in the estimated effects, as different models revealed a range of 3.6-10.7% increase in the odds of fetal death per 5-µg/m3 increment of PM2.5. Each 5-µg/m3 increase in PM2.5 exposure during the entire gestation period significantly increased the odds of fetal death, by 8.1% (95% confidence interval [CI]: 5.1-11.2%). In terms of GA-specific outcomes, the odds of fetal death at a GA of 20-27, 28-36, or ≥ 37 weeks increased by 11.0% (5.9-16.4%), 5.2% (0.4-10.1%), and 8.3% (2.5-14.5%), respectively. In terms of GA-specific exposure, the odds of fetal death increased by 6.0% (3.9-8.2%), 4.1% (3.9-8.2%), and 4.3% (0.5-8.2%) with 5-µg/m3 increases in PM2.5 exposure during the first, second, and third trimester, respectively. The association had the largest effect size (odds ratio = 1.098, 95% CI: 1.061-1.137) between PM2.5 exposure during early gestation (i.e., first trimester) and early fetal death (i.e., 20-27 weeks). CONCLUSIONS: Prenatal exposure to PM2.5 was significantly associated with an increased risk of fetal death. The association was varied by gestational-age-specific exposures or outcomes, suggesting gestation age as a potential modifier on the effect of PM2.5. The fetus was most vulnerable during the early stage of development to death associated with PM2.5 exposure.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Idade Gestacional , Estudos Epidemiológicos , Material Particulado/efeitos adversos , Morte Fetal
5.
Anal Bioanal Chem ; 414(6): 2041-2054, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066602

RESUMO

Sphingolipids are a class of lipids with high structural diversity and biological pleiotropy. Mounting evidence supports a role for sphingolipids in regulating pathophysiology of cardiometabolic diseases, and they have been proposed as potential cardiometabolic biomarkers. Current methods for quantifying sphingolipids require laborious pretreatment and relatively large sample volumes, and cover limited species, hindering their application in epidemiological studies. Herein, we applied a time-, labor-, and sample-saving protocol simply using methanol for plasma sphingolipid extraction. It was compared with classical liquid-liquid extraction methods and showed significant advantages in terms of simplicity, sphingolipid coverage, and sample volume. By coupling the protocol with liquid chromatography using a wide-span mobile phase polarity parameter and tandem mass spectrometry operated in dynamic multiple reaction monitoring mode, 37 sphingolipids from 8 classes (sphingoid base, sphingoid base phosphate, ceramide-1-phosphate, lactosylceramide, hexosylceramide, sphingomyelin, ceramide, and dihydroceramide) were quantified within 16 min, using only 10 µL of human plasma. The current method showed good performance in terms of linearity (R2 > 0.99), intra- and interbatch accuracy (70-123%) and precision (RSD < 12%), matrix effect (91-121%), recovery (96-101%), analyte chemical stability (deviation < 19%), and carryover (< 16%). We successfully applied this method to quantify 33 detectable sphingolipids from 579 plasma samples of an epidemiological study within 10 days. The quantified sphingolipid concentrations were comparable with previous studies. Positive associations of ceramide C22:0/C24:0 and their precursors with homeostasis model assessment of insulin resistance suggested that the synthesis of the ceramides might be involved in insulin resistance. This novel method constitutes a simple and rapid approach to quantify circulating sphingolipids for epidemiological studies using targeted lipidomic analysis, which will help elucidate the sphingolipid-regulated pathways underlying cardiometabolic diseases.


Assuntos
Esfingolipídeos , Espectrometria de Massas em Tandem , Ceramidas/análise , Cromatografia Líquida/métodos , Humanos , Lipidômica , Extração Líquido-Líquido , Esfingolipídeos/análise , Espectrometria de Massas em Tandem/métodos
6.
Environ Res ; 205: 112472, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863689

RESUMO

BACKGROUND: Allergic rhinitis (AR) is one of the most common allergic diseases in the world, and usually persists throughout the activity. Epidemiological studies have shown a positive association between air pollution and allergic rhinitis. However, we could not find any meta-analysis of the risk of air pollutants (PM2.5, PM10, NO2, SO2, O3 and CO) on the prevalence of AR in people of all ages. OBJECTIVES: Carry out a meta-analysis on the results of recent studies (up to 2020) to present valid information about exposure to air pollution and risk of prevalence of AR. METHODS: We systematically searched three databases for studies up to December 17, 2020, including air pollution and AR. Random effect models were conducted to estimate the pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). Subgroup analysis, funnel plot, Egger's test, and the trim-and-fill method were also conducted. RESULTS: Thirty-five studies across 12 countries, including a total of 453,470 participants, were included. The OR per 10 µg/m3 increase of pollutants was 1.13 (1.04-1.22) for PM10 and 1.12 (1.05-1.20) for PM2.5. The OR per 10 µg/m3 increment of gaseous pollutants were 1.13 (1.07-1.20) for NO2, 1.13 (1.04-1.22) for SO2 and 1.07 (1.01-1.12) for O3. No significant association was observed between CO and AR. Children or adolescents are more sensitive to air pollution than adults. The effects of PM10 and SO2 were significantly stronger in Europe than Asia. The effects of air pollutants were more significant and higher in developing countries than in developed countries, except for PM10. A significant difference of subgroup test was found between developed and developing countries of NO2. CONCLUSION: This meta-analysis showed a positive association between air pollution and the prevalence of allergic rhinitis, and identified geographic area and economic level as the potential modifiers for the association.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Rinite Alérgica , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/epidemiologia , Rinite Alérgica/etiologia
7.
Part Fibre Toxicol ; 19(1): 65, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280873

RESUMO

BACKGROUND: Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS: 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1ß, TNF-α, and IL-1ß in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS: Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Material Particulado/toxicidade , Quimiocina CCL2 , Fator de Necrose Tumoral alfa , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Peroxidação de Lipídeos , Quimiocina CCL3 , Quimiocina CCL4 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Interleucina-8 , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Inflamação/induzido quimicamente , Biomarcadores , Lipoxigenases , Tromboxanos , Exposição Ambiental/análise
8.
Environ Sci Technol ; 55(15): 10589-10596, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297563

RESUMO

Fine particulate matter (PM2.5) can promote chronic diseases through the fundamental mechanism of inflammation; however, systemic information is lacking on the inflammatory PM2.5 components. To decipher organic components from personal PM2.5 exposure that were associated with respiratory and circulatory inflammatory responses in older adults, we developed an exposomic approach using trace amounts of particles and applied it on 424 personal PM2.5 samples collected in a panel study in Beijing. Applying an integrated multivariate and univariate untargeted strategy, a total of 267 organic compounds were filtered and then chemically identified according to their association with exhaled nitric oxide (eNO)/interleukin (IL)-6 or serum IL-1ß/IL-6, with monocyclic and polycyclic aromatic compounds (i.e., MACs and PACs) as the representatives. Indoor-derived species with medium volatility including MACs were mainly associated with systemic inflammation, while low-volatile ambient components that originate from combustion sources, such as PACs, were mostly associated with airway inflammation. Following ambient component exposure, we found an inverted U-shaped relationship on change of eNO with insulin resistance, suggesting a higher risk of cardiopulmonary dysfunction for individuals with homeostatic model assessment for insulin resistance (HOMA-IR) levels > 2.3. Overall, this study provided a practical untargeted strategy for the systemic investigation of PM2.5 components and proposed source-specific inflammatory effects.


Assuntos
Poluentes Atmosféricos , Idoso , Poluentes Atmosféricos/análise , Pequim , Humanos , Inflamação , Compostos Orgânicos , Material Particulado/análise
9.
Environ Sci Technol ; 55(6): 3867-3875, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33621071

RESUMO

Concerns on nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment have mainly arisen from their mutagenic and carcinogenic effects. The objective of this study is to investigate whether nitro-PAH exposures are associated with biomarkers of cardiovascular pathophysiology. In a panel study design, urines and blood samples were collected up to four times with a 2-week interval from 89 healthy adults. We measured 1-naphthylamine, 2-naphthylamine, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene as biomarkers of nitro-PAH exposures. We measured three urinary metabolites of arachidonic acid (AA) including 20-hydroxyeicosatetraenoic acid (20-HETE) from the cytochrome P450 (CYP) pathway, 8-isoprostane from the nonenzymatic pathway, and 11-dehydro-thromboxane B2 (11-dhTXB2) from the cyclooxygenase (COX) pathway. Urinary malondialdehyde, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 6-sulfatoxymelatonin (aMT6s) were measured to reflect systemic oxidative stress. Plasma concentrations of the soluble P-selectin and von Willebrand factor (vWF) were measured as biomarkers of platelet activation and endothelial dysfunction. We found that increased urinary concentrations of amino-PAHs were significantly associated with increased 20-HETE, 11-dhTXB2, and 8-OHdG and with decreased 8-isoprostane and aMT6s. Increased amino-PAHs were positively associated with P-selectin and vWF, respectively. These results suggest that exposure to nitro-PAHs increases systemic oxidative stress and alters AA metabolism toward CYP and COX pathways, leading to an increased cardiovascular disease risk.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Ácido Araquidônico , Biomarcadores , Desoxiguanosina , Humanos , Nitratos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
10.
Ecotoxicol Environ Saf ; 225: 112780, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537587

RESUMO

Growing evidence supports that air pollution exposure has become a risk factor of type II diabetes mellitus through the induction of insulin resistance (IR), but the presented findings did not provide a consistent relationship between air pollution exposure and IR in the temporal scale and the magnitude. Reported associated with IR and air pollution exposure, branched-chain amino acids (BCAAs) in blood might modify the association between air pollution exposure and IR. We took advantage of an existing panel study on elderly people who were healthy or with pre-diabetes. Amino acids were analyzed from the serum samples using a UPLC-QQQ-MS, and the homeostasis model assessment of insulin resistance (HOMA-IR) values were calculated to represent the levels of IR in each visit. Exposures to PM2.5, NO2, SO2, CO, O3, and black carbon (BC) were estimated using data from a monitoring station. Linear mixed-effects models were applied to estimate the associations between the air pollution and HOMA-IR, as well as the modifying effects of BCAAs. We found significantly higher concentrations of BCAAs in the pre-diabetic subjects than healthy ones. The concentrations of BCAAs were all significantly associated with HOMA-IR. For subjects with high-level BCAAs, HOMA-IR was positively associated with an IQR increase in PM2.5, NO2, BC, and CO at lag day 2 and in PM2.5, SO2, NO2, BC, and CO at lag day 7. While for subjects with low-level BCAAs, there was no significant association observed at any lag day except for CO at lag day 5. The study provided evidence that circulating BCAAs may modify the relationship between air pollution exposure and the level of insulin resistance in humans.


Assuntos
Poluentes Atmosféricos , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Aminoácidos de Cadeia Ramificada , Diabetes Mellitus Tipo 2/induzido quimicamente , Exposição Ambiental/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA