Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937844

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Assuntos
Aldo-Ceto Redutases , Curcumina , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos , Curcumina/farmacologia , Curcumina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Células Hep G2 , Aldo-Ceto Redutases/metabolismo , Ratos , Masculino , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metformina/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Rodanina/análogos & derivados , Tiazolidinas
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5271-5277, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114116

RESUMO

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/genética , Glucose/uso terapêutico , Oxigênio/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico
3.
J Pharmacol Sci ; 125(3): 283-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048018

RESUMO

Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of atherosclerosis. Ezetimibe is a new lipid lowering agent that inhibits cholesterol absorption. In the present study we attempted to investigate whether ezetimibe has any effect on VSMC proliferation and the potential mechanisms involved. Our data showed ezetimibe abrogated the proliferation and migration of primary rat VSMCs induced by Chol:MßCD. Mechanically, we found that ezetimibe was capable of abolishing cyclin D1, CDK2, phospho-Rb (p-Rb), and E2F protein expressions that were upregulated by Chol:MßCD treatment. In addition, Ezetimibe was able to reverse cell cycle progression induced by Chol:MßCD, which was further supported by its down-regulation of cyclin D1 promoter activity in the presence of Chol:MßCD. Furthermore, ezetimibe abrogated the increment of phospho-ERK1/2 (p-ERK1/2) and nuclear accumulation of ERK1/2 in VSMCs induced by Chol:MßCD. Inhibition of the MAPK pathway by using ERK1/2 inhibitor PD98059 attenuated the reduction effect of ezetimibe on the expressions of phosphor-MEK1 (p-MEK1), p-ERK1/2, and cyclin D1. Taken together our data suggest that ezetimibe inhibits Chol:MßCD-induced VSMCs proliferation and leads to cell cycle arrest at the G0/G1 phase by suppressing cyclin D1 expression via the MAPK signaling pathway. These novel findings support the potential pleiotropic effect of ezetimibe in cardiovascular disease.


Assuntos
Anticolesterolemiantes/farmacologia , Azetidinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclina D1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso Vascular/citologia , Animais , Anticolesterolemiantes/uso terapêutico , Azetidinas/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Depressão Química , Ezetimiba , Masculino , Terapia de Alvo Molecular , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
4.
Acta Pharmacol Sin ; 35(9): 1129-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25087996

RESUMO

AIM: To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. METHODS: VSMCs of SD rats were cultured in the presence of Chol:MßCD (10 µg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. RESULTS: Treatment with Chol:MßCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MßCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 µmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 µmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. CONCLUSION: Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway.


Assuntos
Azetidinas/farmacologia , Colesterol/metabolismo , Lipídeos/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Ezetimiba , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Pharmacology ; 94(5-6): 214-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25402258

RESUMO

BACKGROUND: Ezetimibe is a potent inhibitor of Niemann-Pick type C1-Like 1 and has been approved for the treatment of hypercholesterolemia. Our preliminary study showed that ezetimibe promotes cholesterol efflux from vascular smooth muscle cells (VSMCs). Our aim was to investigate the cellular mechanisms underlying the ezetimibe actions. METHODS AND RESULTS: Rat VSMCs were converted to foam cells by incubation with cholesterol:methyl-ß-cyclodextrin. The intracellular free cholesterol, total cholesterol, and the ratio of cholesteryl ester to total cholesterol were decreased after the incubation of VSMCs with different concentrations of ezetimibe (3, 10, 30, and 30 µmol/l) or treated with 30 µmol/l of ezetimibe for different time periods (6, 12, 24, and 48 h). Our results also showed that the expression of caveolin-1, liver X receptor α, and ATP-binding cassette transporter ABCA1 was enhanced, but the expression of nSREBP-1c was decreased in a concentration- and time-dependent manner. RNA interference was used to determine the roles of caveolin-1 and SREBP-1 in the lipid-lowering effect of ezetimibe. The results showed that caveolin-1 was involved in the regulation of intracellular cholesterol content, and the expression of caveolin-1 was repressed by SREBP-1. CONCLUSION: The present study indicates that ezetimibe protects VSMCs from cholesterol accumulation by regulating the expression of lipid metabolism-related genes.


Assuntos
Anticolesterolemiantes/farmacologia , Azetidinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Caveolina 1/genética , Colesterol/farmacologia , Ezetimiba , Metabolismo dos Lipídeos/genética , Receptores X do Fígado , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Receptores Nucleares Órfãos/genética , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , beta-Ciclodextrinas/farmacologia
6.
Int J Mol Sci ; 15(8): 14348-63, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25196436

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Células-Tronco Mesenquimais/citologia , Humanos , Células-Tronco Mesenquimais/fisiologia
7.
Front Pharmacol ; 13: 831657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924044

RESUMO

The high level of serum cholesterol caused by the excessive absorption of cholesterol can lead to hypercholesteremia, thus promoting the occurrence and development of cancer. Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the treatment of patients with high circulating cholesterol levels for many years. Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of cholesterol absorption. Accumulating data from preclinical models have shown that ezetimibe alone could inhibit the development and progression of cancer through a variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-inflammation, immune enhancement and anti-proliferation. In the past decade, there has been heated discussion on whether ezetimibe combined with statins will increase the risk of cancer. At present, more and more evidence shows that ezetimibe does not increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this review, we discussed the latest progress in the anti-cancer properties of ezetimibe and elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of ezetimibe as a therapeutic agent in future cancer treatment and prevention.

8.
Int J Biol Sci ; 17(10): 2561-2575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326694

RESUMO

Neointimal hyperplasia caused by the excessive proliferation of vascular smooth muscle cells (VSMCs) is the pathological basis of restenosis. However, there are few effective strategies to prevent restenosis. Celastrol, a pentacyclic triterpene, has been recently documented to be beneficial to certain cardiovascular diseases. Based on its significant effect on autophagy, we proposed that celastrol could attenuate restenosis through enhancing autophagy of VSMCs. In the present study, we found that celastrol effectively inhibited the intimal hyperplasia and hyperproliferation of VSMCs by inducing autophagy. It was revealed that autophagy promoted by celastrol could induce the lysosomal degradation of c-MYC, which might be a possible mechanism contributing to the reduction of VSMCs proliferation. The Wnt5a/PKC/mTOR signaling pathway was found to be an underlying mechanism for celastrol to induce autophagy and inhibit the VSMCs proliferation. These observations indicate that celastrol may be a novel drug with a great potential to prevent restenosis.


Assuntos
Autofagia/efeitos dos fármacos , Artéria Femoral/lesões , Miócitos de Músculo Liso/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Proteína Wnt-5a/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA