Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2301054120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011213

RESUMO

The establishment of beneficial interactions with microbes has helped plants to modulate root branching plasticity in response to environmental cues. However, how the plant microbiota harmonizes with plant roots to control their branching is unknown. Here, we show that the plant microbiota influences root branching in the model plant Arabidopsis thaliana. We define that the microbiota's ability to control some stages in root branching can be independent of the phytohormone auxin that directs lateral root development under axenic conditions. In addition, we revealed a microbiota-driven mechanism controlling lateral root development that requires the induction of ethylene response pathways. We show that the microbial effects on root branching can be relevant for plant responses to environmental stresses. Thus, we discovered a microbiota-driven regulatory pathway controlling root branching plasticity that could contribute to plant adaptation to different ecosystems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778283

RESUMO

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Raízes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas
3.
Plant J ; 109(3): 508-522, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743401

RESUMO

Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota , Plantas/microbiologia , Microbiologia do Solo , Rizosfera
4.
Plant J ; 111(2): 546-566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596715

RESUMO

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Assuntos
Oryza , DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant J ; 100(5): 954-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31369175

RESUMO

Crown roots (CRs) are essential components of the rice root system. Several genes involved in CR initiation or development have been identified but our knowledge about how they organize to form a gene regulatory network (GRN) is still limited. To characterize the regulatory cascades acting during CR formation, we used a systems biology approach to infer the GRN controlling CR formation downstream of CROWN ROOTLESS 1 (CRL1), coding for an ASL (asymmetric leaves-2-like)/LBD (LOB domain) transcription factor necessary for CR initiation. A time-series transcriptomic dataset was generated after synchronized induction of CR formation by dexamethasone-mediated expression of CRL1 expression in a crl1 mutant background. This time series revealed three different genome expression phases during the early steps of CR formation and was further exploited to infer a GRN using a dedicated algorithm. The predicted GRN was confronted with experimental data and 72% of the inferred links were validated. Interestingly, this network revealed a regulatory cascade linking CRL1 to other genes involved in CR initiation, root meristem specification and maintenance, such as QUIESCENT-CENTER-SPECIFIC HOMEOBOX, and in auxin signalling. This predicted regulatory cascade was validated in vivo using transient activation assays. Thus, the CRL1-dependant GRN reflects major gene regulation events at play during CR formation and constitutes a valuable source of discovery to better understand this developmental process.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Homeobox , Meristema/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma
6.
BMC Plant Biol ; 16: 64, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964867

RESUMO

BACKGROUND: Despite recent sequencing efforts, local genetic resources remain underexploited, even though they carry alleles that can bring agronomic benefits. Taking advantage of the recent genotyping with 22,000 single-nucleotide polymorphism markers of a core collection of 180 Vietnamese rice varieties originating from provinces from North to South Vietnam and from different agrosystems characterized by contrasted water regimes, we have performed a genome-wide association study for different root parameters. Roots contribute to water stress avoidance and are a still underexploited target for breeding purpose due to the difficulty to observe them. RESULTS: The panel of 180 rice varieties was phenotyped under greenhouse conditions for several root traits in an experimental design with 3 replicates. The phenotyping system consisted of long plastic bags that were filled with sand and supplemented with fertilizer. Root length, root mass in different layers, root thickness, and the number of crown roots, as well as several derived root parameters and shoot traits, were recorded. The results were submitted to association mapping using a mixed model involving structure and kinship to enable the identification of significant associations. The analyses were conducted successively on the whole panel and on its indica (115 accessions) and japonica (64 accessions) subcomponents. The two associations with the highest significance were for root thickness on chromosome 2 and for crown root number on chromosome 11. No common associations were detected between the indica and japonica subpanels, probably because of the polymorphism repartition between the subspecies. Based on orthology with Arabidopsis, the possible candidate genes underlying the quantitative trait loci are reviewed. CONCLUSIONS: Some of the major quantitative trait loci we detected through this genome-wide association study contain promising candidate genes encoding regulatory elements of known key regulators of root formation and development.


Assuntos
Genoma de Planta , Oryza/genética , Raízes de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas , Vietnã
7.
Can J Microbiol ; 59(3): 164-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23540334

RESUMO

Rhizosphere bacteria were isolated from Costularia spp., pioneer sedges from ultramafic soils in New Caledonia, which is a hotspot of biodiversity in the South Pacific. Genus identification, ability to tolerate edaphic constraints, and plant-growth-promoting (PGP) properties were analysed. We found that 10(5) colony-forming units per gram of root were dominated by Proteobacteria (69%) and comprised 21 genera, including Burkholderia (28%), Curtobacterium (15%), Bradyrhizobium (9%), Sphingomonas (8%), Rhizobium (7%), and Bacillus (5%). High proportions of bacteria tolerated many elements of the extreme edaphic conditions: 82% tolerated 100 µmol·L(-1) chromium, 70% 1 mmol·L(-1) nickel, 63% 10 mmol·L(-1) manganese, 24% 1 mmol·L(-1) cobalt, and 42% an unbalanced calcium/magnesium ratio (1/16). These strains also exhibited multiple PGP properties, including the ability to produce ammonia (65%), indole-3-acetic acid (60%), siderophores (52%), and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (39%); as well as the capacity to solubilize phosphates (19%). The best-performing strains were inoculated with Sorghum sp. grown on ultramafic substrate. Three strains significantly enhanced the shoot biomass by up to 33%. The most successful strains influenced plant nutrition through the mobilization of metals in roots and a reduction of metal transfer to shoots. These results suggest a key role of these bacteria in plant growth, nutrition, and adaptation to the ultramafic constraints.


Assuntos
Bactérias/crescimento & desenvolvimento , Cyperaceae/microbiologia , Metais Pesados/metabolismo , Minerais/metabolismo , Rizosfera , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sequência de Bases , Biodiversidade , Biomassa , Carbono-Carbono Liases/metabolismo , Cyperaceae/crescimento & desenvolvimento , Cyperaceae/metabolismo , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Nova Caledônia , Fixação de Nitrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo , Compostos de Amônio Quaternário/metabolismo , RNA Ribossômico 16S/química , Rhizobium/metabolismo , Sideróforos/metabolismo , Poluentes do Solo/metabolismo
8.
PLoS One ; 15(11): e0238736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211715

RESUMO

Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Transcriptoma/genética , Parede Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lasers , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcrição Gênica/genética
9.
Plants (Basel) ; 8(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336687

RESUMO

The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.

10.
Rice (N Y) ; 7(1): 30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26224559

RESUMO

In this review, we report on the recent developments made using both genetics and functional genomics approaches in the discovery of genes controlling root development in rice. QTL detection in classical biparental mapping populations initially enabled the identification of a very large number of large chromosomal segments carrying root genes. Two segments with large effects have been positionally cloned, allowing the identification of two major genes. One of these genes conferred a tolerance to low phosphate content in soil, while the other conferred a tolerance to drought by controlling root gravitropism, resulting in root system expansion deep in the soil. Findings based on the higher-resolution QTL detection offered by the development of association mapping are discussed. In parallel with genetics approaches, efforts have been made to screen mutant libraries for lines presenting alterations in root development, allowing for the identification of several genes that control different steps of root development, such as crown root and lateral root initiation and emergence, meristem patterning, and the control of root growth. Some of these genes are closely phylogenetically related to Arabidopsis genes involved in the control of lateral root initiation. This close relationship stresses the conservation among plant species of an auxin responsive core gene regulatory network involved in the control of post-embryonic root initiation. In addition, we report on several genetic regulatory pathways that have been described only in rice. The complementarities and the expected convergence of the direct and reverse genetic approaches used to decipher the genetic determinants of root development in rice are discussed in regards to the high diversity characterizing this species and to the adaptations of rice root system architecture to different edaphic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA