RESUMO
BACKGROUND: The production of foie gras involves different metabolic pathways in the liver of overfed ducks such as lipid synthesis and carbohydrates catabolism, but the establishment of these pathways has not yet been described with precision during embryogenesis. The early environment can have short- and long-term impacts on the physiology of many animal species and can be used to influence physiological responses that is called programming. This study proposes to describe the basal hepatic metabolism at the level of mRNA in mule duck embryos in order to reveal potential interesting programming windows in the context of foie gras production. To this end, a kinetic study was designed to determine the level of expression of selected genes involved in steatosis-related liver functions throughout embryogenesis. The livers of 20 mule duck embryos were collected every 4 days from the 12th day of embryogenesis (E12) until 4 days after hatching (D4), and gene expression analysis was performed. The expression levels of 50 mRNAs were quantified for these 7 sampling points and classified into 4 major cellular pathways. RESULTS: Interestingly, most mRNAs involved in lipid metabolism are overexpressed after hatching (FASN, SCD1, ACOX1), whereas genes implicated in carbohydrate metabolism (HK1, GAPDH, GLUT1) and development (HGF, IGF, FGFR2) are predominantly overexpressed from E12 to E20. Finally, regarding cellular stress, gene expression appears quite stable throughout development, contrasting with strong expression after hatching (CYP2E1, HSBP1, HSP90AA1). CONCLUSION: For the first time we described the kinetics of hepatic ontogenesis at mRNA level in mule ducks and highlighted different expression patterns depending on the cellular pathway. These results could be particularly useful in the design of embryonic programming for the production of foie gras.
Assuntos
Patos , Transcriptoma , Animais , Carboidratos , Patos/genética , Equidae , Metabolismo dos Lipídeos/genética , Lipídeos , Fígado/metabolismo , Redes e Vias Metabólicas/genéticaRESUMO
Induced by overfeeding, hepatic steatosis is a process exploited for the "foie gras" production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal). Gene expression and protein analysis realized on the liver, muscle, and abdominal fat showed an activation of a cholesterol biosynthetic pathway during the complete overfeeding period mainly in livers with significant correlations between its weight and its cholesterolemia (r = 0.88; P < 0.0001) and between the liver weight and the hmgcr and soat1 expression (r = 0.4, P < 0.0001 and r = 0.67; P < 0.0001, respectively). Results also revealed an activation of insulin and amino acid cells signaling a pathway suggesting that ducks boost insulin sensitivity to raise glucose uptake and use via glycolysis and lipogenesis. Cellular stress analysis revealed an upregulation of key autophagy-related gene expression atg8 and sqstm1(P < 0.0001) during the complete overfeeding period, mainly in the liver, in contrast to an induction of cyp2e1(P < 0.0001), suggesting that autophagy could be suppressed during steatosis development. This study has highlighted different mechanisms enabling mule ducks to efficiently handle the starch overload by keeping its liver in a nonpathological state. Moreover, it has revealed potential biomarker candidates of hepatic steatosis as plasma cholesterol for the liver weight.
Assuntos
Glicemia/metabolismo , Patos/metabolismo , Ingestão de Energia , Metabolismo Energético , Fígado Gorduroso/metabolismo , Lipogênese , Fígado/metabolismo , Estresse Fisiológico , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/genética , Metabolismo Energético/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Regulação Enzimológica da Expressão Gênica , Cinética , Lipogênese/genética , Fígado/patologia , Masculino , Estado Nutricional , Tamanho do ÓrgãoRESUMO
In waterfowls, overfeeding leads to a hepatic steatosis, also called "foie gras". Our main objectives were to determine what is the share of genes involvement of glucose metabolism in the establishment of fatty liver in three genotypes of waterfowls: Muscovy (Cairina moschata), Pekin ducks (Anas platyrhynchos) and their crossbreed, the mule duck. 288 male ducks of Pekin, Muscovy and mule genotypes were reared until weeks 12 and overfed between weeks 12 and 14. We analysed gene expression at the beginning, the middle and the end of the overfeeding period in different tissues. We have shown an upregulation of glucose transporters (GLUT) in peripheral tissues (pectoralis major or adipose tissue) in Pekin ducks. In addition, GLUT2 was not found in jejunal mucosa and another GLUT seems to replace it 3 h after the meal: GLUT3. Mule ducks upregulating GLUT3 earlier compared to Pekin ducks. However, these results need further investigations. In liver, globally, Pekin ducks exhibit the highest expression of GLUT or enzymes implicated in glycolysis. The few significant variations of gene expressions in glucose metabolism between these three genotypes and the momentary specific overexpression of GLUT do not allow us to detect a lot of specific genotype differences. To conclude, the differences in response to overfeeding of Pekin, Muscovy and mule ducks, for the establishment of hepatic steatosis, cannot be only explained by the glucose metabolism at transcriptomic level.
Assuntos
Patos/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Animais , Peso Corporal , Genótipo , Masculino , Especificidade de Órgãos/genéticaRESUMO
Our main objectives were to determine the genes involved in the establishment of hepatic steatosis in three genotypes of palmipeds. To respond to this question, we have compared Muscovy ducks, Pekin ducks and their crossbreed the mule duck fed ad libitum or overfed. We have shown a hepatic overexpression of fatty acid synthase (FAS) and di-acyl glycerol acyl transferase 2 (DGAT2) in overfed individuals, where DGAT2 seemed to be more regulated. This increase in lipogenesis genes is associated with a decrease of lipoprotein formation in Muscovy and mule ducks, especially apolipoprotein B (ApoB) and Microsomal Triglyceride Transfer Protein (MTTP), leading to lipid accumulation in liver. In Pekin ducks, MTTP expression is upregulated suggesting a better hepatic lipids exportation. Regarding lipids re-uptake, fatty acid-binding protein 4 and very-low-density-lipoprotein receptor are overexpressed in liver of mule ducks at the end of the overfeeding period. This phenomenon puts light on a mechanism unknown until today. In fact, mule can incorporate more lipids in liver than the two other genotypes leading to an intensified hepatic steatosis. To conclude, our results confirmed the genotype variability to overfeeding. Furthermore, similar observations are already described in non-alcoholic fatty liver disease in human, and ask if ducks could be an animal model to study hepatic triglyceride accumulation.
Assuntos
Proteínas Aviárias , Proteínas de Transporte , Patos , Proteínas de Ligação a Ácido Graxo , Fígado Gorduroso , Doenças das Aves Domésticas , Receptores de LDL , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Patos/genética , Patos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/veterinária , Humanos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismoRESUMO
In waterfowl, the response to overfeeding differs from one genotype to the other. Pekin ducks generally store lipids in the peripheral tissues while Muscovy and mule ducks promote hepatic lipid storage. A possible reason for these various susceptibilities to hepatic steatosis could be a difference in insulin sensitivity. We suggest a resistance to insulin in Pekin ducks. In the present work we investigate the action of insulin on glucose and lipid metabolisms for the three overfed genotypes. Regardless of the kind of genotype, all ducks appear to be sensitive to insulin: their glycemia is lower when the animals are treated with insulin. Insulin-treated Muscovy and Pekin ducks present a lower increase in total body weight (-16.5% for Muscovy; -8.3% for Pekin); and a significantly lower liver weight than the controls (-9.6% and -18.3%). The percentage of total lipids in the liver is higher in the controls than in the insulin-treated Pekin and mule ducks (respectively -40.4% and -34.7%), which means a decreased hepatic lipogenesis. Pekin ducks present a higher pectoral muscle weight when the individuals are insulin-treated (+9.7%). Lipoprotein lipase (LPL) activity appears to be significantly higher in insulin-treated Pekin and Muscovy ducks (1.39 and 3.38 times greater than controls). Insulin-treated mule ducks present a decrease of muscle and abdominal lipid storage compared to controls (-11.6% and -13.8%). In this experiment, exogenous insulin has induced an increase of lipid oxidation and has led to a less favorable use and storage of dietary glucose. The hypothesis of insulin-resistance of Pekin ducks is not verified.
Assuntos
Distribuição da Gordura Corporal , Patos/metabolismo , Fígado Gorduroso/veterinária , Insulina/administração & dosagem , Lipogênese , Hipernutrição/veterinária , Doenças das Aves Domésticas/sangue , Gordura Abdominal/patologia , Animais , Proteínas Aviárias/sangue , Glicemia , Ingestão de Energia , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Genótipo , Insulina/fisiologia , Metabolismo dos Lipídeos , Lipase Lipoproteica/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Tamanho do Órgão , Hipernutrição/sangue , Hipernutrição/complicações , Músculos Peitorais/metabolismo , Músculos Peitorais/patologia , Doenças das Aves Domésticas/patologia , Especificidade da Espécie , Gordura Subcutânea/patologia , Triglicerídeos/sangue , Aumento de PesoRESUMO
Embryonic thermal programming has been shown to improve foie gras production in overfed mule ducks. However, the mechanisms at the origin of this programming have not yet been characterized. In this study, we investigated the effect of embryonic thermal manipulation (+1°C, 16 h/24 h from embryonic (E) day 13 to E27) on the hepatic expression of genes involved in lipid and carbohydrate metabolisms, stress, cell proliferation and thyroid hormone pathways at the end of thermal manipulation and before and after overfeeding (OF) in mule ducks. Gene expression analyses were performed by classic or high throughput real-time qPCR. First, we confirmed well-known results with strong impact of OF on the expression of genes involved in lipid and carbohydrates metabolisms. Then we observed an impact of OF on the hepatic expression of genes involved in the thyroid pathway, stress and cell proliferation. Only a small number of genes showed modulation of expression related to thermal programming at the time of OF, and only one was also impacted at the end of the thermal manipulation. For the first time, we explored the molecular mechanisms of embryonic thermal programming from the end of heat treatment to the programmed adult phenotype with optimized liver metabolism.
RESUMO
This study aimed to assess the effect of two dietary cadmium (Cd) levels (C1: 1 mgkg(-1); C10: 10 mgkg(-1)) on bird Anas platyrhynchos exposed for 10, 20 and 40 days (5 animals per experimental condition). Ducks were able to accumulate high amounts of Cd, especially in kidneys (after 40 days: C1 8.1 ± 1 mgkg(-1), C10 37.7 ± 4.3 mgkg(-1)). After 40 days, the lowest Cd level triggered oxidative stress and stimulated mitochondrial metabolism. At the same time, highest amounts of Cd (C10 group) only triggered repression of genes encoding for catalase and acetyl-CoA carboxylase, with repression factors of 1/50 and 1/5, respectively. High dose exposures were then associated with the repression of genes encoding for antioxidant, whereas low dose exposure triggered their induction. In contrast, the onset of MT gene expression appeared quickly for the C10 group even if a time delay was observed between gene expression and protein accumulation. Through the comparison of A. platyrhynchos and Cairina moschata, the response to Cd toxicity appeared species-dependent. Discrepancies between species could be explained by differential utilization of MT. This pathway of detoxification seemed sufficient to counter Cd toxicity.
Assuntos
Anseriformes/metabolismo , Cádmio/toxicidade , Dieta/veterinária , Patos/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Anseriformes/genética , Sequência de Bases , Cádmio/metabolismo , Catalase/genética , Catalase/metabolismo , Relação Dose-Resposta a Droga , Patos/classificação , Patos/genética , Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Fatores de Tempo , Fatores de Transcrição/efeitos dos fármacosRESUMO
In environment, birds often fast in connection with breeding, migration or drastic climatic conditions and need to mobilize lipid reserves during these periods. The impairment of lipid metabolism by cadmium (Cd; 1 mg kg(-1) added in diet) was investigated on palmiped Cairina moschata. Expression levels of genes involved in lipid metabolism, mitochondrial metabolism and detoxification were investigated in liver and muscle of ducks. Lipid content in muscle and liver were analysed and plasma triglycerides were quantified. After 20 days, ducks exposed to Cd displayed a lower body weight and lower lipid content in liver than controls. In muscle, the increase of lipid content was only significant for control ducks but not for exposed ducks. Exposed ducks appeared unable to sufficiently transport and store lipids into peripheral tissues. Cd impairs lipid metabolism by several ways. First, Cd triggered the down-regulation of fatty acids synthesis in liver even if the NADPH production and the mitochondrial metabolism are enhanced, suggesting a stronger energy needs. Secondly, the associated decrease of plasma triglycerides and lipoprotein lipase activity with Cd are consistent with impairment of lipids storage in peripheral tissues.
Assuntos
Cádmio/toxicidade , Patos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Sequência de Bases , Peso Corporal/efeitos dos fármacos , Cádmio/metabolismo , Primers do DNA/genética , Glucoquinase/genética , Glucoquinase/metabolismo , Lipase/genética , Lipase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Masculino , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Estatísticas não ParamétricasRESUMO
Trace elements (mercury [Hg], cadmium [Cd], copper [Cu], zinc [Zn], lead [Pb], aluminium [Al], nickel [Ni], arsenic [As], and selenium [Se]) were investigated using inductively coupled plasma-mass spectrometry in liver, kidney, muscle, and feather of aquatic birds wintering or inhabiting the wetlands situated on the Southwest Atlantic coast of France. A majority of greylag geese, red knots, and grey plovers were collected from among hunter-shot animals. The relation between residue concentrations, age (juvenile vs. adult), and sex was investigated. Trace elements were lower than threshold levels of toxicity, except for Pb. Greylag geese sampled could be considered Pb-poisoned. These consequential levels of contamination could be the result of the ingestion of Pb-shot from ammunition used in hunting areas they crossed during migration. Cd accumulation increased with age, whereas Pb levels in feathers were lower in adult birds in connection with moulting. As was influenced by sex. Female birds displayed higher concentrations in liver and feathers than did male birds.
Assuntos
Aves/metabolismo , Oligoelementos/análise , Poluentes da Água/análise , Fatores Etários , Animais , Peso Corporal , Monitoramento Ambiental , Feminino , França , Rim/química , Fígado/química , Masculino , Músculos/química , Tamanho do Órgão , Fatores Sexuais , Especificidade da Espécie , Oligoelementos/toxicidadeRESUMO
The impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg(-1) and C10: 10 mg kg(-1)) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochondrial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker.
Assuntos
Anseriformes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Catalase/genética , Rim/metabolismo , Fígado/metabolismo , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Músculos/metabolismo , Reação em Cadeia da Polimerase , Superóxido Dismutase/genética , Fatores de TempoRESUMO
Animal studies have shown that very early life events may have programing effects on adult metabolism and health. In this study, we aim, for the first, time to elucidate the effects of embryonic thermal manipulation (TM) on the performance of overfed mule ducks, in particular for the production of foie gras (fatty liver). We designed three embryonic TMs with different protocols for increasing the incubation temperature during the second part of embryogenesis, to determine whether hepatic metabolism could be "programed" to improve its fattening response to overfeeding at the age of three months. Initial results confirm that an increase in the incubation temperature leads to faster development (observed for all treated groups compared to the control group), and a decrease in the body surface temperature at birth. Thereafter, in a very innovative way, we showed that the three TM conditions specifically increased liver weights, as well as liver lipid content after overfeeding compared to the non-TM control group. These results demonstrate that embryonic TM effectively "programs" the metabolic response to the challenge of force-feeding, resulting in increased hepatic steatosis. Finally, our goal of improving foie gras production has been achieved with three different embryonic thermal stimuli, demonstrating the high reproducibility of the method. However, this repeatability was also perceptible in the adverse effects observed on two groups treated with exactly the same cumulative temperature rise leading to a reduction in hatchability (75 and 76% vs. 82% in control), in addition to an increase in the melting rate after cooking. These results suggest that embryonic thermal programing could be an innovative and inexpensive technique for improving foie gras production, although the specific protocol (duration, level or period of temperature increase), remains to be elucidated in order to avoid adverse effects.
RESUMO
The role of different factors such as biological material (tissues, organs) and trophic condition (overfeeding or not) in the metal accumulation was studied in three genotypes of ducks (Pekin, Muscovy, and Mule) under breeding conditions. Results showed that overfeeding decreased the concentration in Cd, Cu, and Zn through the dilution process. In contrast, mercury concentration increased with this method. A relation between lipidic metabolism of genotypes and the distribution of this metal in biological material was found. Domestic ducks were little contaminated, but a low chronic contamination in Cd was observed, probably coming from the food. Due to the low levels of contamination observed in these breeding ducks, they can be considered as a good control for further contamination studies and comparison with accumulation levels recorded in the field. The impact of feeding condition on accumulation showed the importance of taking into account the life cycle of birds before studying their contamination and the impact of pollutants.
Assuntos
Cádmio/análise , Cobre/análise , Patos/metabolismo , Mercúrio/análise , Zinco/análise , Animais , Peso Corporal , Dieta , Patos/genética , França , Genótipo , Especificidade da Espécie , Distribuição TecidualRESUMO
BACKGROUND: Livestock production should respond to societal, environmental and economic changes. Since 2006 and the ban on antibiotics as growth factors in European Union, the use of probiotics has become widespread and has demonstrated the effect of intestinal microbiota on the performance of farm animals. OBJECTIVE: The aim of this study was to investigate the effect of supplementation with Lactobacillus salivarius (as a probiotics strain or combined with other strains) on zootechnical performance, metabolic and immune gene expression and intestinal microbiota diversity in mule ducks using high-throughput sequencing and real-time PCR. METHOD: The mule ducks were reared for 79 days and overfed for 12 days with or without probiotics. Samples were collected at 14 (starting period) and 91 days (end of overfeeding period), 3 hours post feeding. RESULTS: Irrespective of digestive content, age, level of feed intake or supplementation with probiotics, Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the bacterial community in mule ducks. At 14 days, both the ileal and cecal samples were dominated by Firmicutes (in particular the Clostridiales order). Overfeeding induced a shift between Clostridiales and Lactobacillales in the ileal samples whereas in the cecal samples, the relative abundance of Firmicutes decreased. Overfeeding also induced hepatic over-expression of Fatty Acid Synthase (FAS) and of the lipid transporter gene Fatty Acid Binding Protein 4 (FABP4). This increase in lipid metabolism genes is associated with a decrease in inflammatory response. CONCLUSION: Finally, probiotic supplementation had only a slight impact on gene expression and microbiota diversity, both at 14 days and after overfeeding.