Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Infect Dis ; 219(9): 1490-1498, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30476111

RESUMO

BACKGROUND: A novel ultrasensitive malaria rapid diagnostic test (us-RDT) has been developed for improved active Plasmodium falciparum infection detection. The usefulness of this us-RDT in clinical diagnosis and fever management has not been evaluated. METHODS: Diagnostic performance of us-RDT was compared retrospectively to that of conventional RDT (co-RDT) in 3000 children and 515 adults presenting with fever to Tanzanian outpatient clinics. The parasite density was measured by an ultrasensitive qPCR (us-qPCR), and the HRP2 concentration was measured by an enzyme-linked immunosorbent assay. RESULTS: us-RDT identified few additional P. falciparum-positive patients as compared to co-RDT (276 vs 265 parasite-positive patients detected), with only a marginally greater sensitivity (75% vs 73%), using us-qPCR as the gold standard (357 parasite-positive patients detected). The specificity of both RDTs was >99%. Five of 11 additional patients testing positive by us-RDT had negative results by us-qPCR. The HRP2 concentration was above the limit of detection for co-RDT (>3653 pg of HRP2 per mL of blood) in almost all infections (99% [236 of 239]) with a parasite density >100 parasites per µL of blood. At parasite densities <100 parasites/µL, the HRP2 concentration was above the limits of detection of us-RDT (>793 pg/mL) and co-RDT in 29 (25%) and 24 (20%) of 118 patients, respectively. CONCLUSION: There is neither an advantage nor a risk of using us-RDT, rather than co-RDT, for clinical malaria diagnosis. In febrile patients, only a small proportion of infections are characterized by a parasite density or an HRP2 concentration in the range where use of us-RDT would confer a meaningful advantage over co-RDT.


Assuntos
Antígenos de Protozoários/sangue , Febre/sangue , Malária Falciparum/sangue , Malária Falciparum/diagnóstico , Parasitemia/sangue , Proteínas de Protozoários/sangue , Kit de Reagentes para Diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Pré-Escolar , Estudos Transversais , Reações Falso-Negativas , Reações Falso-Positivas , Febre/parasitologia , Humanos , Lactente , Limite de Detecção , Malária Falciparum/complicações , Pessoa de Meia-Idade , Parasitemia/parasitologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Tanzânia , Fatores de Tempo , Adulto Jovem
2.
J Infect Dis ; 218(2): 265-276, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554284

RESUMO

Background: Despite the increased use and worldwide distribution of malaria rapid diagnostic tests (RDTs) that distinguish between Plasmodium falciparum and non-falciparum species, little is known about their performance detecting Plasmodium knowlesi (Pk), Plasmodium malariae (Pm), and Plasmodium ovale (Po). This review seeks to analyze the results of published studies evaluating the diagnostic accuracy of malaria RDTs in detecting Pk, Pm, and Po monoinfections. Methods: MEDLINE, EMBASE, Web of Science, and CENTRAL databases were systematically searched to identify studies that reported the performance of RDTs in detecting Pk, Pm, and Po monoinfections. Results: Among 40 studies included in the review, 3 reported on Pk, 8 on Pm, 5 on Po, 1 on Pk and Pm, and 23 on Pm and Po infections. In the meta-analysis, estimates of sensitivities of RDTs in detecting Pk infections ranged 2%-48%. Test performances for Pm and Po infections were less accurate and highly heterogeneous, mainly because of the small number of samples tested. Conclusions: Limited data available suggest that malaria RDTs show suboptimal performance for detecting Pk, Pm, and Po infections. New improved RDTs and appropriately designed cross-sectional studies to demonstrate the usefulness of RDTs in the detection of neglected Plasmodium species are urgently needed.


Assuntos
Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Malária/diagnóstico , Plasmodium knowlesi/isolamento & purificação , Plasmodium malariae/isolamento & purificação , Plasmodium ovale/isolamento & purificação , Humanos , Malária/parasitologia , Sensibilidade e Especificidade , Fatores de Tempo
3.
Malar J ; 17(1): 75, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422048

RESUMO

To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to detect and track in real-time its emergence and spread need to be strengthened or in some places established. Currently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, standardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organization has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The Worldwide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and networking activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening of national reference laboratories in malaria-endemic countries through standardized protocols and training plus the availability of a proficiency testing programme, would contribute to the improvement and sustainability of anti-malarial resistance surveillance networks worldwide.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária Falciparum/prevenção & controle , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos
4.
Malar J ; 17(1): 29, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334955

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are becoming widely adopted for case management at community level. However, reports and anecdotal observations indicate that the blood transfer step poses a significant challenge to many users. This study sought to evaluate the inverted cup device in the hands of health workers in everyday clinical practice, in comparison with the plastic pipette, and to determine the volume accuracy of the device made of a lower-cost plastic. METHODS: The volume accuracy of inverted cup devices made of two plastics, PMMA and SBC, was compared by transferring blood 150 times onto filter paper and comparing the blood spot areas with those produced by 20 reference transfers with a calibrated micropipette. The ease of use, safety and acceptability of the inverted cup device and the pipette were evaluated by 50 health workers in Nigeria. Observations were recorded on pre-designed questionnaires, by the health workers themselves and by trained observers. Focus group discussions were also conducted. RESULTS: The volume accuracy assessment showed that the device made from the low-cost material (SBC) delivered a more accurate volume (mean 5.4 µL, SD 0.48 µL, range 4.5-7.0 µL) than the PMMA device (mean 5.9 µL, SD 0.48 µL, range 4.9-7.2 µL). The observational evaluation demonstrated that the inverted cup device performed better than the pipette in all aspects, e.g. higher proportions of health workers achieved successful blood collection (96%, vs. 66%), transfer of the required blood volume (90%, vs. 58%), and blood deposit without any loss (95%, vs. 50%). Majority of health workers also considered it' very easy' to use (81%),'very appropriate' for everyday use (78%), and 50% of them reported that it was their preferred BTD. CONCLUSIONS: The good volume accuracy and high acceptability of the inverted cup device shown in this study, along with observed ease of use and safety in hands of health workers, further strengthens prior findings which demonstrated its higher accuracy as compared with other BTDs in a laboratory setting. Altogether, these studies suggest that the inverted cup device should replace other types of devices for use in day-to-day malaria diagnosis with RDTs.


Assuntos
Competência Clínica/estatística & dados numéricos , Agentes Comunitários de Saúde/estatística & dados numéricos , Testes Diagnósticos de Rotina/métodos , Malária/diagnóstico , Testes Diagnósticos de Rotina/estatística & dados numéricos , Grupos Focais , Humanos , Nigéria
5.
Malar J ; 17(1): 262, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005616

RESUMO

BACKGROUND: Pregnant women frequently show low-density Plasmodium infections that require more sensitive methods for accurate diagnosis and early treatment of malaria. This is particularly relevant in low-malaria transmission areas, where intermittent preventive treatment is not recommended. Molecular methods, such as polymerase chain reaction (PCR) are highly sensitive, but require sophisticated equipment and advanced training. Instead, loop mediated isothermal amplification (LAMP) provides an opportunity for molecular detection of malaria infections in remote endemic areas, outside a reference laboratory. The aim of the study is to evaluate the performance of LAMP for the screening of malaria in pregnant women in Colombia. METHODS: This is a nested prospective study that uses data and samples from a larger cross-sectional project conducted from May 2016 to January 2017 in three Colombian endemic areas (El Bagre, Quibdó, and Tumaco). A total of 531 peripheral and placental samples from pregnant women self-presenting at local hospitals for antenatal care visits, at delivery or seeking medical care for suspected malaria were collected. Samples were analysed for Plasmodium parasites by light microscopy (LM), rapid diagnostic test (RDT) and LAMP. Diagnostic accuracy endpoints (sensitivity, specificity, predictive values, and kappa scores) of LM, RDT and LAMP were compared with nested PCR (nPCR) as the reference standard. RESULTS: In peripheral samples, LAMP showed an improved sensitivity (100.0%) when compared with LM 79.5% and RDT 76.9% (p < 0.01), particularly in afebrile women, for which LAMP sensitivity was two-times higher than LM and RDT. Overall agreement among LAMP and nPCR was high (kappa value = 1.0). Specificity was similar in all tests (100%). In placental blood, LAMP evidenced a four-fold improvement in sensitivity (88.9%) when compared with LM and RDT (22.2%), being the only method, together with nPCR, able to detect placental infections in peripheral blood. CONCLUSIONS: LAMP is a simple, rapid and accurate molecular tool for detecting gestational and placental malaria, being able to overcome the limited sensitivity of LM and RDT. These findings could guide maternal health programs in low-transmission settings to integrate LAMP in their surveillance systems for the active detection of low-density infections and asymptomatic malaria cases.


Assuntos
Testes Diagnósticos de Rotina/métodos , Malária/diagnóstico , Microscopia/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Colômbia , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
6.
Malar J ; 16(1): 385, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938906

RESUMO

BACKGROUND: In malaria elimination settings, the very low levels of transmission now being attained present challenges that demand new strategies to identify and treat low-density infections in both symptomatic and asymptomatic populations. Accordingly, passive case detection activities need to be supplemented by active case detection (ACD) strategies with more sensitive diagnostic tools. Malaria rapid diagnostic tests (RDTs) have provided low- and middle-income countries with unprecedented access to malaria diagnostics. Nevertheless, conventional RDTs miss a potentially important proportion of sub-microscopic infections. Therefore, new combination highly sensitive (HS-)RDTs, able to detect low parasite densities and identify all infected individuals, could support countries implementing ACD strategies for radical cure to accelerate malaria elimination. To address this need, an on-line survey was conducted to gather information from malaria control programme representatives to guide the development of next-generation RDTs. RESULTS: Most of respondents confirmed that ACD was a common activity in their programmes (56/75; 75%). Although microscopy was the preferred method in case management and reactive case detection, RDTs were the primary diagnostic tests used in proactive case detection (31/75; 41%). In terms of preferences for species detection in a new combination HS-RDT, data was not one-directional. Survey respondents slightly preferred the Pf/Pv/Pan combination (42%; 21/50), while Pf/Pan was more popular among end-users. Survey respondents also valued a low-cost (< $1.00 USD), lightweight and portable test, able to detect asymptomatic infections and differentiate species, as well as provide immediate results that could be interpreted with the naked eye. In addition, respondents were open to new tests and even to replace the existing ones for ACD (63%; 47/75). CONCLUSIONS: This survey provided valuable information on the use and current limitations of ACD, on the primary product characteristics for a next-generation combination HS-RDT to support ACD and radical cure, and on the potential adoption of such a test, if available, to support malaria elimination.


Assuntos
Competência Clínica/estatística & dados numéricos , Controle de Doenças Transmissíveis/métodos , Testes Diagnósticos de Rotina/métodos , Malária/prevenção & controle , Controle de Doenças Transmissíveis/instrumentação , Controle de Doenças Transmissíveis/estatística & dados numéricos , Testes Diagnósticos de Rotina/instrumentação , Testes Diagnósticos de Rotina/estatística & dados numéricos , Humanos , Sensibilidade e Especificidade , Inquéritos e Questionários
7.
Malar J ; 16(1): 196, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506275

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) play a critical role in malaria case management, and assurance of quality is a key factor to promote good adherence to test results. Since 2007, the World Health Organization (WHO) and the Foundation for Innovative New Diagnostics (FIND) have coordinated a Malaria RDT Evaluation Programme, comprising a pre-purchase performance evaluation (product testing, PT) and a pre-distribution quality control of lots (lot testing, LT), the former being the basis of WHO recommendations for RDT procurement. Comprehensive information on malaria RDTs sold worldwide based on manufacturers' data and linked to independent performance data is currently not available, and detailed knowledge of procurement practices remains limited. METHODS: The use of the PT/LT Programme results as well as procurement and lot verification practices were assessed through a large-scale survey, gathering product-specific RDT sales and procurement data (2011-14 period) from a total of 32 manufacturers, 12 procurers and 68 National Malaria Control Programmes (NMCPs). RESULTS: Manufacturers' reports showed that RDT sales had more than doubled over the four years, and confirmed a trend towards increased compliance with the WHO procurement criteria (from 83% in 2011 to 93% in 2014). Country-level reports indicated that 74% of NMCPs procured only 'WHO-compliant' RDT products, although procurers' transactions datasets revealed a surprisingly frequent overlap of different products and even product types (e.g., Plasmodium falciparum-only and Plasmodium-pan) in the same year and country (60 and 46% of countries, respectively). Importantly, the proportion of 'non-complying' (i.e., PT low scored or not evaluated) products was found to be higher in the private health care sector than in the public sector (32% vs 5%), and increasing over time (from 22% of private sector sales in 2011 to 39% in 2014). An estimated 70% of the RDT market was covered by the LT programme. The opinion about the PT/LT Programmes was positive overall, and quality of RDTs as per the PT Programme was rated as the number one procurement criteria. CONCLUSIONS: This survey provided in-depth information on RDT sales and procurement dynamics, including the largely unstudied private sector, and demonstrated how the WHO-FIND Programme has positively influenced procurement practices in the public sector.


Assuntos
Testes Diagnósticos de Rotina/economia , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária/diagnóstico , Comércio/economia , Testes Diagnósticos de Rotina/métodos , Humanos , Setor Privado , Setor Público , Controle de Qualidade , Organização Mundial da Saúde
8.
Malar J ; 16(1): 29, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086789

RESUMO

BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection. METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs. RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/µL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/µL. CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.


Assuntos
Malária/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium knowlesi/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Voluntários Saudáveis , Humanos , Malária/parasitologia , Malásia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
9.
Malar J ; 16(1): 20, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061871

RESUMO

BACKGROUND: Microscopy and rapid diagnosis tests have a limited sensitivity in diagnosis of malaria by Plasmodium ovale. The LAMP kit (LoopAMP®) can be used in the field without special equipment and could have an important role in malaria control programmes in endemic areas and for malaria diagnosis in returned travellers. The performance of the Pan primer of the kit in detecting malaria by P. ovale was compared with the results of standard nPCR in samples of patients returning from P. ovale endemic areas. METHODS: Plasmodium ovale positive samples (29, tested by PCR and/or microscopy) and malaria negative specimens (398, tested by microscopy and PCR) were collected in different hospitals of Europe from June 2014 to March 2016 and frozen at -20 °C. Boil and spin method was used to extract DNA from all samples and amplification was performed with LoopAMP® MALARIA kit (Eiken Chemical, Japan) in an automated turbidimeter (Eiken 500). The results of LAMP read by turbidimetry and with the naked eye were compared. RESULTS: The kit showed a sensitivity of 100% and a specificity of 97.24% with positive and negative predictive values of 72.5 and 100%, respectively. Naked eyed readings were in accordance with turbidimetry readings (sensitivity, 92.5%, specificity, 98.96% and positive and negative predictive values, respectively, 90.24 and 99.22%). The limit of detection of LAMP assay for P. ovale was between 0.8 and 2 parasites/µl. CONCLUSIONS: The Pan primer of the Malaria kit LoopAMP® can detect P. ovale at very low-levels and showed a predictive negative value of 100%. This tool can be useful in malaria control and elimination programmes and in returned travellers from P. ovale endemic areas. Naked eye readings are equivalent to automated turbidimeter readings in specimens obtained with EDTA.


Assuntos
Malária/diagnóstico , Malária/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium ovale/isolamento & purificação , Europa (Continente) , Humanos , Plasmodium ovale/genética , Valor Preditivo dos Testes , Sensibilidade e Especificidade
10.
Malar J ; 16(1): 128, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340585

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) are today the most widely used method for malaria diagnosis and are recommended, alongside microscopy, for the confirmation of suspected cases before the administration of anti-malarial treatment. The diagnostic performance of RDTs, as compared to microscopy or PCR is well described but the actual analytical sensitivity of current best-in-class tests is poorly documented. This value is however a key performance indicator and a benchmark value needed to developed new RDTs of improved sensitivity. METHODS: Thirteen RDTs detecting either the Plasmodium falciparum histidine rich protein 2 (HRP2) or the plasmodial lactate dehydrogenase (pLDH) antigens were selected from the best performing RDTs according to the WHO-FIND product testing programme. The analytical sensitivity of these products was evaluated using a range of reference materials including P. falciparum and Plasmodium vivax whole parasite samples as well as recombinant proteins. RESULTS: The best performing HRP2-based RDTs could detect all P. falciparum cultured samples at concentrations as low as 0.8 ng/mL of HRP2. The limit of detection of the best performing pLDH-based RDT specifically detecting P. vivax was 25 ng/mL of pLDH. CONCLUSION: The analytical sensitivity of P. vivax and Pan pLDH-based RDTs appears to vary considerably from product to product, and improvement of the limit-of-detection for P. vivax detecting RDTs is needed to match the performance of HRP2 and Pf pLDH-based RDTs for P. falciparum. Different assays using different reference materials produce different values for antigen concentration in a given specimen, highlighting the need to establish universal reference assays.


Assuntos
Cromatografia de Afinidade/métodos , Testes Diagnósticos de Rotina/métodos , Malária/diagnóstico , Plasmodium vivax/isolamento & purificação , Adulto , Antígenos de Protozoários/análise , Humanos , Malária Falciparum , Malária Vivax , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/imunologia , Sensibilidade e Especificidade , Fatores de Tempo
11.
BMC Infect Dis ; 17(1): 616, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893183

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is widely acknowledged as a global problem, yet in many parts of the world its magnitude is still not well understood. This review, using a public health focused approach, aimed to understand and describe the current status of AMR in Africa in relation to common causes of infections and drugs recommended in WHO treatment guidelines. METHODS: PubMed, EMBASE and other relevant databases were searched for recent articles (2013-2016) in accordance with the PRISMA guidelines. Article retrieval and screening were done using a structured search string and strict inclusion/exclusion criteria. Median and interquartile ranges of percent resistance were calculated for each antibiotic-bacterium combination. RESULTS: AMR data was not available for 42.6% of the countries in the African continent. A total of 144 articles were included in the final analysis. 13 Gram negative and 5 Gram positive bacteria were tested against 37 different antibiotics. Penicillin resistance in Streptococcus pneumoniae was reported in 14/144studies (median resistance (MR): 26.7%). Further 18/53 (34.0%) of Haemophilus influenza isolates were resistant to amoxicillin. MR of Escherichia coli to amoxicillin, trimethoprim and gentamicin was 88.1%, 80.7% and 29.8% respectively. Ciprofloxacin resistance in Salmonella Typhi was rare. No documented ceftriaxone resistance in Neisseria gonorrhoeae was reported, while the MR for quinolone was 37.5%. Carbapenem resistance was common in Acinetobacter spp. and Pseudomonas aeruginosa but uncommon in Enterobacteriaceae. CONCLUSION: Our review highlights three important findings. First, recent AMR data is not available for more than 40% of the countries. Second, the level of resistance to commonly prescribed antibiotics was significant. Third, the quality of microbiological data is of serious concern. Our findings underline that to conserve our current arsenal of antibiotics it is imperative to address the gaps in AMR diagnostic standardization and reporting and use available information to optimize treatment guidelines.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , África , Infecções Bacterianas/tratamento farmacológico , Ceftriaxona/farmacologia , Ciprofloxacina/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/isolamento & purificação
12.
Anal Chem ; 88(23): 11774-11782, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27750420

RESUMO

There is an increasing need for highly sensitive and quantitative diagnostics at the point-of-care. The lateral flow immunoassay (LFA) is one of the most widely used point-of-care diagnostic tests; however, LFAs generally suffer from low sensitivity and lack of quantification. To overcome these limitations, thermal contrast amplification (TCA) is a new method that is based on the laser excitation of gold nanoparticles (GNPs), the most commonly used visual signature, to evoke a thermal signature. To facilitate the clinical translation of the TCA technology, we present the development of a TCA reader, a platform technology that significantly improves the limit of detection and provides quantification of disease antigens in LFAs. This TCA reader provides enhanced sensitivity over visual detection by the human eye or by a colorimetric reader (e.g., BD Veritor System Reader). More specifically, the TCA reader demonstrated up to an 8-fold enhanced analytical sensitivity and quantification among LFAs for influenza, malaria, and Clostridium difficile. Systematic characterization of the laser, infrared camera, and other components of the reader and their integration into a working reader instrument are described. The development of the TCA reader enables simple, highly sensitive quantification of LFAs at the point-of-care.


Assuntos
Clostridioides difficile/isolamento & purificação , Imunoensaio/métodos , Influenza Humana/diagnóstico , Malária/diagnóstico , Testes Imediatos , Temperatura , Ouro/química , Humanos , Nanopartículas Metálicas/química
13.
Malar J ; 14: 45, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652763

RESUMO

BACKGROUND: Dried blood spots are a common medium for collecting patient blood prior to testing for malaria by molecular methods. A new shaped filter device for the quick and simple collection of a designated volume of patient blood has been designed and tested against conventional blood spots for accuracy and precision. METHODS: Shaped filter devices were laser cut from Whatman GB003 paper to absorb a 20 µl blood volume. These devices were used to sample Plasmodium falciparum infected blood and the volume absorbed was measured volumetrically. Conventional blood spots were made by pipetting 20 µl of the same blood onto Whatman 3MM paper. DNA was extracted from both types of dried blood spot using Qiagen DNA blood mini or Chelex extraction for real-time PCR analysis, and PURE extraction for malaria LAMP testing. RESULTS: The shaped filter devices collected a mean volume of 21.1 µl of blood, with a coefficient of variance of 8.1%. When used for DNA extraction by Chelex and Qiagen methodologies the mean number of international standard units of P. falciparum DNA recovered per µl of the eluate was 53.1 (95% CI: 49.4 to 56.7) and 32.7 (95% CI: 28.8 to 36.6), respectively for the shaped filter device, and 54.6 (95% CI: 52.1 to 57.1) and 12.0 (95% CI: 9.9 to 14.1), respectively for the 3MM blood spots. Qiagen extraction of 200 µl of whole infected blood yielded 853.6 international standard units of P. falciparum DNA per µl of eluate. CONCLUSIONS: A shaped filter device provides a simple way to quickly sample and store a defined volume of blood without the need for any additional measuring devices. Resultant dried blood spots may be employed for DNA extraction using a variety of technologies for nucleic acid amplification without the need for repeated cleaning of scissors or punches to prevent cross contamination of samples and results are comparable to traditional DBS.


Assuntos
Sangue/parasitologia , Dessecação/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase
14.
Malar J ; 14: 115, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25889624

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. METHODS: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. RESULTS: When tested against P. falciparum samples at 200 parasites/µL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. CONCLUSIONS: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.


Assuntos
Antígenos de Protozoários/sangue , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Testes Diagnósticos de Rotina/normas
15.
Malar J ; 14: 43, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627037

RESUMO

BACKGROUND: Asymptomatic, low parasite density malaria infections are difficult to detect with currently available point-of-care diagnostics. This study piloted a loop-mediated isothermal amplification (LAMP) kit for field-friendly, high-throughput detection of asymptomatic malaria infections during mass screening and treatment (MSAT) in Zanzibar, a malaria pre-elimination setting. METHODS: Screening took place in three known hotspot areas prior to the short rains in November. Finger-prick blood was taken for screening by rapid diagnostic test (RDT) and LAMP and collected on filter paper for subsequent polymerase chain reaction (PCR) analyses. LAMP results were compared to RDT and to PCR using McNemar's test. RESULTS: Approximately 1,000 people were screened. RDT detected ten infections (1.0% (95% CI 0.3-1.6)) whilst both LAMP and PCR detected 18 (1.8% (95% CI 0.9-2.6)) infections. However, PCR identified three infections that LAMP did not detect and vice versa. LAMP testing was easy to scale-up in field conditions requiring minimal training and equipment, with results ready one to three hours after screening. CONCLUSIONS: Despite lower than expected prevalence, LAMP detected a higher number of infections than the currently used diagnostic, RDT. LAMP is a field-friendly, sensitive diagnostic test that could be useful for MSAT malaria campaigns which require quick results to enable prompt treatment.


Assuntos
Doenças Assintomáticas , Malária/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue/parasitologia , Criança , Pré-Escolar , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Tanzânia , Adulto Jovem
16.
Malar J ; 14: 205, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25982190

RESUMO

BACKGROUND: Molecular tools for detection of low-density asymptomatic Plasmodium infections are needed in malaria elimination efforts. This study reports results from the hitherto largest implementation of loop-mediated isothermal amplification (LAMP) for centralized mass screening of asymptomatic malaria in Zanzibar. METHODS: Healthy individuals present and willing to participate in randomly selected households in 60 villages throughout Zanzibar were screened for malaria by rapid diagnostic tests (RDT). In 50% of the study households, participants were asked to provide 60 µL of finger-prick blood for additional LAMP screening. LAMP was conducted in two centralized laboratories in Zanzibar, by trained technicians with limited or no previous experience of molecular methods. The LAMP assay was performed with Loopamp(TM) MALARIA Pan/Pf Detection Kit (Eiken Chemical Company, Japan). Samples positive for Plasmodium genus (Pan)-LAMP were re-tested using Plasmodium falciparum-specific LAMP kits. RESULTS: Paired RDT and LAMP samples were available from 3983 individuals. The prevalence of asymptomatic malaria was 0.5% (CI 95% 0.1-0.8) and 1.6% (CI 95% 1.1-2.2) by RDT and Pan-LAMP, respectively. LAMP detected 3.4 (CI 95% 2.2-5.2) times more Plasmodium positive samples than RDT. DNA contamination was experienced, but solved by repetitive decontamination of all equipment and reagents. CONCLUSIONS: LAMP is a simple and sensitive molecular tool, and has potential in active surveillance and mass-screening programmes for detection of low-density asymptomatic malaria in pre-elimination settings. However, in order to deploy LAMP more effectively in field settings, protocols may need to be adapted for processing larger numbers of samples. A higher throughput, affordable closed system would be ideal to avoid contamination.


Assuntos
Infecções Assintomáticas/epidemiologia , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Programas de Rastreamento/métodos , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Tanzânia/epidemiologia , Adulto Jovem
17.
J Infect Dis ; 208(4): 637-44, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23633403

RESUMO

BACKGROUND: Diagnosis of malaria relies on parasite detection by microscopy or antigen detection; both fail to detect low-density infections. New tests providing rapid, sensitive diagnosis with minimal need for training would enhance both malaria diagnosis and malaria control activities. We determined the diagnostic accuracy of a new loop-mediated amplification (LAMP) kit in febrile returned travelers. METHODS: The kit was evaluated in sequential blood samples from returned travelers sent for pathogen testing to a specialist parasitology laboratory. Microscopy was performed, and then malaria LAMP was performed using Plasmodium genus and Plasmodium falciparum-specific tests in parallel. Nested polymerase chain reaction (PCR) was performed on all samples as the reference standard. Primary outcome measures for diagnostic accuracy were sensitivity and specificity of LAMP results, compared with those of nested PCR. RESULTS: A total of 705 samples were tested in the primary analysis. Sensitivity and specificity were 98.4% and 98.1%, respectively, for the LAMP P. falciparum primers and 97.0% and 99.2%, respectively, for the Plasmodium genus primers. Post hoc repeat PCR analysis of all 15 tests with discrepant results resolved 4 results in favor of LAMP, suggesting that the primary analysis had underestimated diagnostic accuracy. CONCLUSIONS: Malaria LAMP had a diagnostic accuracy similar to that of nested PCR, with a greatly reduced time to result, and was superior to expert microscopy.


Assuntos
Malária Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Medicina de Viagem/métodos , Adulto , Sangue/parasitologia , Feminino , Humanos , Masculino , Microscopia , Plasmodium falciparum/genética , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
18.
J Infect Dis ; 208(4): 645-52, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23633405

RESUMO

BACKGROUND: Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too complex for field deployment. A new commercial molecular assay based on loop-mediated isothermal amplification (LAMP) was assessed for field use. METHODS: Malaria LAMP (Eiken Chemical, Japan) was evaluated for samples from 272 outpatients at a rural Ugandan clinic and compared with expert microscopy, nested PCR, and quantitative PCR (qPCR). Two technicians performed the assay after 3 days of training, using 2 alternative blood sample-preparation methods and visual interpretation of results by fluorescence assay. RESULTS: Compared with 3-well nested PCR, the sensitivity of both LAMP and single-well nested PCR was 90%; the microscopy sensitivity was 51%. For samples with a Plasmodium falciparum qPCR titer of ≥ 2 parasites/µL, LAMP sensitivity was 97.8% (95% confidence interval, 93.7%-99.5%). Most false-negative LAMP results involved samples with parasitemia levels detectable by 3-well nested PCR but very low or undetectable by qPCR. CONCLUSIONS: Malaria LAMP in a remote Ugandan clinic achieved sensitivity similar to that of single-well nested PCR in a United Kingdom reference laboratory. LAMP dramatically lowers the detection threshold achievable in malaria-endemic settings, providing a new tool for diagnosis, surveillance, and screening in elimination strategies.


Assuntos
Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Parasitemia/diagnóstico , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População Rural , Sensibilidade e Especificidade , Uganda , Adulto Jovem
19.
Mol Microbiol ; 79(1): 222-39, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21166905

RESUMO

Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.


Assuntos
Caspases/metabolismo , Morte Celular , Leishmania major/enzimologia , Leishmania major/fisiologia , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Domínio Catalítico , Citoplasma/enzimologia , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
Malar J ; 10: 30, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21303528

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. METHODS: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. RESULTS: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). CONCLUSIONS: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Testes Diagnósticos de Rotina/métodos , Malária/diagnóstico , Segurança do Sangue/métodos , Coleta de Amostras Sanguíneas/instrumentação , Testes Diagnósticos de Rotina/instrumentação , Pessoal de Saúde , Humanos , Malária/sangue , Nigéria , Filipinas , Reprodutibilidade dos Testes , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA