Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456194

RESUMO

The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applications, permits the importation of digital imaging and communication on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain anatomical structures with new algorithms that improve upon the current research results. A 3D mesh of the segmented structure is then automatically generated that can be printed in 3D or visualized using both augmented and virtual reality, with the designed software systems. The Nextmed project is unique, as it covers the whole process from uploading dicom images to automatic segmentation, 3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There are many researches about application of augmented and virtual reality for medical image 3D visualization; however, they are not automated platforms. Although some other anatomical structures can be studied, we focused on one case: a lung study. Analyzing the application of the platform to more than 1000 dicom images and studying the results with medical specialists, we concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization.


Assuntos
Realidade Aumentada , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Realidade Virtual , Inteligência Artificial , Diagnóstico por Imagem , Humanos , Modelos Anatômicos
2.
J Med Syst ; 43(4): 102, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874965

RESUMO

Virtual and Augmented Reality has experienced a steady growth in medicine in recent years. At the same time, the radiological images play a central role in the diagnosis and planification of surgical approaches. The aim of this study is to present the first attempt to enhanced radiological image visualization using virtual and augmented reality for better planification and monitorization of surgeries. This application allows to move beyond traditional two-dimensional images towards three-dimensional models that can be visualized and manipulated with both Augmented Reality and Virtual Reality. We propose possible approaches to automate the segmentation of radiological images, using computer vision techniques and Artificial Intelligence.


Assuntos
Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos , Realidade Virtual , Algoritmos , Inteligência Artificial , Humanos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA