Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 72(9): 3474-3485, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33454762

RESUMO

During barley germination, cysteine proteases are essential in the mobilization of storage compounds providing peptides and amino acids to sustain embryo growth until photosynthesis is completely established. Knockdown barley plants, generated by artificial miRNA, for the cathepsins B- and F-like HvPap-19 and HvPap-1 genes, respectively, showed less cysteine protease activities and consequently lower protein degradation. The functional redundancy between proteases triggered an enzymatic compensation associated with an increase in serine protease activities in both knockdown lines, which was not sufficient to maintain germination rates and behaviour. Concomitantly, these transgenic lines showed alterations in the accumulation of protein and carbohydrates in the grain. While the total amount of protein increased in both transgenic lines, the starch content decreased in HvPap-1 knockdown lines and the sucrose concentration was reduced in silenced HvPap-19 grains. Consequently, phenotypes of HvPap-1 and HvPap-19 artificial miRNA lines showed a delay in the grain germination process. These data demonstrate the potential of exploring the properties of barley proteases for selective modification and use in brewing or in the livestock feeding industry.


Assuntos
Catepsinas , Germinação , Hordeum , Proteínas de Plantas , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Mol Plant Microbe Interact ; 33(11): 1299-1314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32720872

RESUMO

The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.


Assuntos
Arabidopsis/microbiologia , Ascomicetos , Genes Fúngicos , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade
3.
J Exp Bot ; 70(7): 2143-2155, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30452688

RESUMO

To survive under water deficiency, plants alter gene expression patterns, make structural and physiological adjustments, and optimize the use of water. Rapid degradation and turnover of proteins is required for effective nutrient recycling. Here, we examined the transcriptional responses of the C1A cysteine protease family to drought in barley and found that four genes were up-regulated in stressed plants. Knock-down lines for the protease-encoding genes HvPap-1 and HvPap-19 showed unexpected changes in leaf cuticle thickness and stomatal pore area. The efficiency of photosystem II and the total amount of proteins were almost unaltered in stressed transgenic plants while both parameters decreased in stressed wild-type plants. Although the patterns of proteolytic activities in the knock-down lines did not change, the amino acid accumulation increased in response to drought, concomitant with a higher ABA content. Whilst jasmonic acid (JA) and JA-Ile concentrations increased in stressed leaves of the wild-type and the HvPap-1 knock-down lines, their levels were lower in the HvPap-19 knock-down lines, suggesting the involvement of a specific hormone interaction in the process. Our data indicate that the changes in leaf cuticle thickness and stomatal pore area had advantageous effects on leaf defense against fungal infection and mite feeding mediated by Magnaporthe oryzae and Tetranychus urticae, respectively.


Assuntos
Cisteína Proteases/genética , Secas , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Família Multigênica/genética , Proteínas de Plantas/genética , Cisteína Proteases/metabolismo , Hordeum/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Regulação para Cima
4.
Environ Microbiol ; 20(12): 4261-4280, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30058114

RESUMO

Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Pseudomonas syringae/efeitos da radiação , Solanum lycopersicum/microbiologia , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Fator sigma/metabolismo , Ativação Transcricional , Sistemas de Secreção Tipo III/genética , Virulência/genética
5.
Int J Mol Sci ; 19(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751577

RESUMO

Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.


Assuntos
Insetos/patogenicidade , Ácaros/patogenicidade , Plantas/parasitologia , Animais , Lectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo
6.
Plant Mol Biol ; 94(1-2): 33-44, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28299506

RESUMO

KEY MESSAGE: Pru p 3, a peach LTP, is located in pollinated flower styles and secreting downy hairs, transporting a derivative of camptothecin bound to phytosphingosine. Pru p 3 may inhibit a second pollination and may keep away herbivores until seed maturation. The allergen Pru p 3, a peach lipid transfer protein, has been well studied. However, its physiological function remains to be elucidated. Our results showed that Pru p 3 usually carries a lipid ligand that play an essential role in its function in plants. Using ESI-qToF, we observed that the ligand was a derivative of camptothecin binding to phytosphingosine, wich that is inserted into the hydrophobic tunnel of the protein. In addition, the described ligand displayed topoisomerase I activity inhibition and self-fluorescence, both recognized as camptothecin properties. During flower development, the highest expression of Pru p 3 was detected in the styles of pollinated flowers, in contrast to its non-expression in unpollinated pistils, where expression decreased after anthesis. During ripening, the expression of Pru p 3 were observed mainly in peel but not in pulp. In this sense, Pru p 3 protein was also localized in trichomes covering the fruit epidermis.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Camptotecina/metabolismo , Flores/metabolismo , Modelos Moleculares , Pólen/fisiologia , Conformação Proteica , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
Plant Physiol ; 170(4): 2511-24, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26912343

RESUMO

Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors.


Assuntos
Germinação , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Cistatinas/genética , Cistatinas/metabolismo , Grão Comestível/embriologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Expressão Gênica , Inativação Gênica , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , MicroRNAs/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteólise , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo
8.
Plant Cell Environ ; 40(10): 2236-2249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707409

RESUMO

Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.


Assuntos
Temperatura Baixa , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Populus/enzimologia , Populus/fisiologia , Desmetilação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Populus/genética
9.
Plant Cell Environ ; 40(11): 2806-2819, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28810288

RESUMO

The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.


Assuntos
Meristema/enzimologia , Meristema/crescimento & desenvolvimento , Oxirredutases O-Desmetilantes/metabolismo , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Domínio Catalítico , Temperatura Baixa , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Flavonoides/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hippocastanaceae/enzimologia , Hippocastanaceae/genética , Hippocastanaceae/crescimento & desenvolvimento , Meristema/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Estações do Ano
10.
J Exp Bot ; 67(14): 4297-310, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217548

RESUMO

Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth.


Assuntos
Cisteína Proteases/fisiologia , Hordeum/metabolismo , Cisteína Proteases/metabolismo , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Hordeum/enzimologia , Hordeum/fisiologia , Nitrogênio/deficiência , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Proteólise , Reação em Cadeia da Polimerase em Tempo Real , Inanição/metabolismo , Estresse Fisiológico/fisiologia
11.
Genet Mol Biol ; 39(3): 329-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505308

RESUMO

Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

12.
Mol Plant Microbe Interact ; 28(12): 1304-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646245

RESUMO

Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/virologia , Vírus do Mosaico/fisiologia , Genoma Viral , Vírus do Mosaico/genética , Plantas Geneticamente Modificadas , Transcriptoma , Proteínas não Estruturais Virais/genética
13.
Environ Microbiol ; 16(7): 2072-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24033935

RESUMO

Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinal Luminoso/genética , Fotorreceptores Microbianos/genética , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Aderência Bacteriana/efeitos da radiação , Proteínas de Bactérias/metabolismo , Luz , Movimento , Fotorreceptores Microbianos/classificação , Fotorreceptores Microbianos/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , Pseudomonas syringae/efeitos da radiação , Virulência
14.
J Exp Bot ; 65(14): 3825-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24600023

RESUMO

Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.


Assuntos
Cistatinas/metabolismo , Cisteína Proteases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Hordeum/metabolismo , Ligação Proteica
15.
Plant Cell Physiol ; 54(9): 1441-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23825217

RESUMO

The function of HAK transporters in high-affinity K+ uptake in plants is well established; this study aims to demonstrate that some transporters of the same family play important roles in endomembranes. The PpHAK2-PpHAK4 genes of Physcomitrella patens encode three transporters of high sequence similarity. Quantitative PCR showed that PpHAK2 and PpHAK3 transcripts are expressed at approximately the same level as the PpACT5 gene, while the expression of PpHAK4 seems to be restricted to specific conditions that have not been determined. KHA1 is an endomembrane K+/H+ antiporter of Saccharomyces cerevisiae, and the expression of the PpHAK2 cDNA, but not that of PpHAK3, suppressed the defect of a kha1 mutant. Transient expression of the PpHAK2-green fluorescent protein (GFP) and PpHAK3-GFP fusion proteins in P. patens protoplasts localized to the endoplasmic reticulum and Golgi complex, respectively. To determine the function of PpHAK2 and PpHAK3 in planta, we constructed ΔPphak2 and ΔPphak2 ΔPphak3 plants. ΔPphak2 plants were normal under all of the conditions tested except under K+ starvation or at acidic pH in the presence of acetic acid, whereupon they die. The defect observed under K+ starvation was suppressed by the presence of Na+. We propose that PpHAK2 may encode either a K(+)-H(+) symporter or a K+/H+ antiporter that mediates the transfer of H+ from the endoplasmic reticulum lumen to the cytosol. PpHAK2 may be a model of the second function of HAK transporters in plant cells. The disruption of the PpHAK3 gene in ΔPphak2 plants showed no effect.


Assuntos
Bryopsida/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sequência de Aminoácidos , Bryopsida/genética , Bryopsida/ultraestrutura , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/genética , Simportadores/genética , Simportadores/metabolismo
16.
Cell Microbiol ; 14(5): 669-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233353

RESUMO

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.


Assuntos
Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Pseudomonas syringae/enzimologia , Solanum lycopersicum/microbiologia , Fatores de Virulência/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Mapeamento de Interação de Proteínas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
17.
Redox Biol ; 67: 102902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797370

RESUMO

The interaction between plants and phytophagous arthropods encompasses a complex network of molecules, signals, and pathways to overcome defences generated by each interacting organism. Although most of the elements and modulators involved in this interplay are still unidentified, plant redox homeostasis and signalling are essential for the establishment of defence responses. Here, focusing on the response of Arabidopsis thaliana to the spider mite Tetranychus urticae, we demonstrate the involvement in plant defence of the thioredoxin TRXh5, a small redox protein whose expression is induced by mite infestation. TRXh5 is localized in the cell membrane system and cytoplasm and is associated with alterations in the content of reactive oxygen and nitrogen species. Protein S-nitrosylation signal in TRXh5 over-expression lines is decreased and alteration in TRXh5 level produces changes in the JA/SA hormonal crosstalk of infested plants. Moreover, TRXh5 interacts and likely regulates the redox state of an uncharacterized receptor-like kinase, named THIOREDOXIN INTERACTING RECEPTOR KINASE (TIRK), also induced by mite herbivory. Feeding bioassays performed withTRXh5 over-expression plants result in lower leaf damage and reduced egg accumulation after T. urticae infestation than in wild-type (WT) plants. In contrast, mites cause a more severe injury in trxh5 mutant lines where a greater number of eggs accumulates. Likewise, analysis of TIRK-gain and -loss-of-function lines demonstrate the defence role of this receptor in Arabidopsis against T. urticae. Altogether, our findings demonstrate the interaction between TRXh5 and TIRK and highlight the importance of TRXh5 and TIRK in the establishment of effective Arabidopsis defences against spider mite herbivory.


Assuntos
Arabidopsis , Tetranychidae , Animais , Arabidopsis/genética , Tetranychidae/genética , Plantas , Tiorredoxinas/genética , Homeostase
18.
New Phytol ; 194(1): 83-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22229950

RESUMO

• Sylleptic branching in trees may increase significantly branch number, leaf area and the general growth of the tree, particularly in its early years. Although this is a very important trait, so far little is known about the genes that control this process. • This article characterizes the Castanea sativa RAV1 gene, homologous to Arabidopsis TEM genes, by analyzing its circadian behavior and examining its winter expression in chestnut stems and buds. Transgenic hybrid poplars over-expressing CsRAV1 or showing RNA interference down-regulated PtaRAV1 and PtaRAV2 expression were produced and analyzed. • Over-expression of the CsRAV1 gene induces the early formation of sylleptic branches in hybrid poplar plantlets during the same growing season in which the lateral buds form. Only minor growth differences and no changes in wood anatomy are produced. • The possibility of generating trees with a greater biomass by manipulating the CsRAV1 gene makes CsRAV1 transgenic plants promising candidates for bioenergy production.


Assuntos
Genes de Plantas/genética , Hippocastanaceae/genética , Hibridização Genética , Morfogênese/genética , Populus/crescimento & desenvolvimento , Populus/genética , Sequência de Aminoácidos , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento
19.
J Exp Bot ; 63(12): 4615-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22791822

RESUMO

Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.


Assuntos
Catepsina F/metabolismo , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Precursores Enzimáticos/metabolismo , Hordeum/enzimologia , Albuminas/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Catepsina F/genética , Endosperma/efeitos dos fármacos , Endosperma/enzimologia , Endosperma/genética , Precursores Enzimáticos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Germinação , Globulinas/metabolismo , Glutens/metabolismo , Glicosilação , Hordeum/efeitos dos fármacos , Hordeum/genética , Magnoliopsida/enzimologia , Magnoliopsida/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteínas Recombinantes , Fatores de Tempo
20.
Physiol Plant ; 145(1): 85-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22221156

RESUMO

Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease-inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum-Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.


Assuntos
Inibidores de Cisteína Proteinase/química , Papaína/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Retículo Endoplasmático/enzimologia , Ativação Enzimática , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Papaína/antagonistas & inibidores , Papaína/genética , Papaína/fisiologia , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas/genética , Transporte Proteico , Proteólise , Sementes/enzimologia , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA