Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(8): 3389-3401, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353412

RESUMO

Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.


Assuntos
Ácidos Graxos , Lipídeos , Humanos , Ácidos Graxos/análise , Espectrometria de Massas , Ésteres/química , Íons/química , Ânions
2.
Anal Chem ; 95(46): 17082-17088, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937965

RESUMO

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.


Assuntos
Bactérias , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina
3.
Anal Chem ; 94(48): 16838-16846, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395489

RESUMO

Lipidomic and metabolomic profiles of sporulated and vegetative Bacillus subtilis and Bacillus thuringiensis from irradiated lysates were recorded using a quadrupole ion trap mass spectrometer modified to perform two-dimensional tandem mass spectrometry (2D MS/MS). The 2D MS/MS data domains, acquired using a 1.2 s scan of negative ions generated by nanoelectrospray ionization of microwave irradiated spores, showed the presence of dipicolinic acid (DPA) as well as various lipids. Aside from microwave radiation to extract DPA and lipids from spores, sample preparation was minimal. Characteristic lipid and metabolic profiles were observed using 107─108 cells of the two Bacillus species. Major features of the lipid profiles observed for the vegetative states included sets of phosphatidylglycerol (PG) lipids. Product ion spectra were extracted from the 2D MS/MS data, and they provided structural information on the fatty acid components of the PG lipids. The study demonstrates the flexibility, speed, and informative power of metabolomic and lipidomic fingerprinting for identifying the presence of spore-forming biological agents using 2D MS/MS as a rapid profiling screening method.


Assuntos
Bacillus , Bacillus/química , Espectrometria de Massas em Tandem , Lipidômica , Bacillus subtilis/química , Fosfatidilgliceróis
4.
Analyst ; 147(5): 940-946, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166732

RESUMO

The growth of the bacterium E. coli was monitored by targeting the phospholipid constituents through desorption electrospray ionization and characterizing individual sets of isomers by recording the full 2D MS/MS data domain in a single scan of a modified quadrupole ion trap mass spectrometer. The experiments tested the applicability of the new instrumental capabilities which include sample interrogation at the molecular level for multiple components at speeds of <10 seconds/sample. The major lipids observed were phosphatidylethanolamines and phosphatidylglycerols and the growth experiment showed fatty acid chain modification from alkene to cyclopropyl groups over time. Notably, these novel MS scans were also performed using desorption electrospray ionization (DESI) to quickly sample complex mixtures without pre-separation. This demonstration experiment has implications for the value of ambient ionization mass spectrometry for monitoring biological systems on physiologically relevant timescales.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Escherichia coli , Fosfatidilgliceróis , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Analyst ; 146(23): 7104-7108, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34757350

RESUMO

Spore lysis of Bacillus species is achieved by brief (1 min) microwave irradiation while tandem mass spectrometry (MS/MS) allows identification of the characteristic spore marker, dipicolinic acid. This rapid measurement, made on 105-108 spores, has significant implications for biothreat recognition.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Micro-Ondas , Ácidos Picolínicos , Espectrometria de Massas em Tandem
6.
Anal Chem ; 91(17): 11349-11354, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398004

RESUMO

The worldwide increase in antimicrobial resistance is due to antibiotic overuse in agriculture and overprescription in medicine. For appropriate and timely patient support, faster diagnosis of antimicrobial resistance is required. Current methods for bacterial identification rely on genomics and proteomics and use comparisons with databases of known strains, but the diagnostic value of metabolites and lipids has not been explored significantly. Standard mass spectrometry/chromatography methods involve multiple dilutions during sample preparation and separation. To increase the amount of chemical information acquired and the speed of analysis of lipids, multiple reaction monitoring profiling (MRM-Profiling) has been applied. The MRM-Profiling workflow includes a discovery stage and a screening stage. The discovery stage employs precursor (PREC) ion and neutral loss (NL) scans to screen representative pooled samples for functional groups associated with particular lipid classes. The information from the first stage is organized in precursor/product ion pairs, or MRMs, and the screening stage rapidly interrogates individual samples for these MRMs. In this study, we performed MRM-Profiling of lipid extracts from four different strains of Escherichia coli cultured with amoxicillin or amoxicillin/clavulanate, a ß-lactam and ß-lactamase inhibitor, respectively. t tests, analysis of variance and receiver operating characteristic (ROC) curves were used to determine the significance of each MRM. Principal component analysis was applied to distinguish different strains cultured under conditions that allowed or disallowed development of bacterial resistance. The results demonstrate that MRM-Profiling distinguishes the lipid profiles of resistant and nonresistant E. coli strains.


Assuntos
Amoxicilina/farmacologia , Ácido Clavulânico/farmacologia , Resistência Microbiana a Medicamentos , Escherichia coli/química , Lipídeos/análise , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Escherichia coli/fisiologia , Espectrometria de Massas , Análise de Componente Principal , Curva ROC , beta-Lactamases/efeitos dos fármacos
7.
Chem Sci ; 11(47): 12686-12694, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34094463

RESUMO

We report a metal-free novel route for the accelerated synthesis of benzimidazole and its derivatives in the ambient atmosphere. The synthetic procedure involves 1,2-aromatic diamines and alkyl or aryl carboxylic acids reacting in electrostatically charged microdroplets generated using a nano-electrospray (nESI) ion source. The reactions are accelerated by orders of magnitude in comparison to the bulk. No other acid, base or catalyst is used. Online analysis of the microdroplet accelerated reaction products is performed by mass spectrometry. We provide evidence for an acid catalyzed reaction mechanism based on identification of the intermediate arylamides. Their dehydration to give benzimidazoles occurs in a subsequent thermally enhanced step. It is suggested that the extraordinary acidity at the droplet surface allows the carboxylic acid to function as a C-centered electrophile. Comparisons of this methodology with data from thin film and bulk synthesis lead to the proposal of three key steps in the reaction: (i) formation of an unusual reagent (protonated carboxylic acid) because of the extraordinary conditions at the droplet interface, (ii) accelerated bimolecular reaction because of limited solvation at the interface and (iii) thermally assisted elimination of water. Eleven examples are shown as evidence of the scope of this chemistry. The accelerated synthesis has been scaled-up to establish the substituent-dependence and to isolate products for NMR characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA