Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(9): 5159-5167, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30920206

RESUMO

An open dynamic chamber for the continuous monitoring of diffusive and ebullitive fluxes of methane (CH4) in aquatic ecosystems was designed and developed. This method is based on a standard floating chamber in which a well-defined carrier gas flows. The concentration of CH4 is measured continuously at the outlet of the chamber, and the flux is determined from a mass balance equation. The method was carefully tested in a laboratory and was subsequently applied to two lakes, in Mexico, with contrasting trophic states. We show here that the method allows for the continuous quantification of CH4 diffusive flux higher than 25 × 10-6 g m-2 h-1, the determination of ebullitive flux, and the individual characterization of bubbles larger than 1.50-1.72 mm in diameter. The method was also applied to determine carbon dioxide emissions (CO2). In that case, the method was less sensitive but allowed for the characterization of diffusive fluxes higher than 10 mg CO2 m-2 h-1 and of bubbles larger than 5.3-8.4 mm in diameter. This high-throughput method can be adapted to any gas detector at low cost, making it a convenient tool to better constrain greenhouse gas emission from freshwater ecosystems.


Assuntos
Ecossistema , Metano , Dióxido de Carbono , Lagos , México
2.
Environ Sci Technol ; 48(19): 11421-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25209573

RESUMO

A novel low-cost method for the combined, real-time, and in situ determination of dissolved methane and carbon dioxide concentrations in freshwater ecosystems was designed and developed. This method is based on the continuous sampling of water from a freshwater ecosystem to a gas/liquid exchange membrane. Dissolved gas is transferred through the membrane to a continuous flow of high purity nitrogen, which is then measured by an off-axis integrated cavity output spectrometer (OA-ICOS). This method, called M-ICOS, was carefully tested in a laboratory and was subsequently applied to four lakes in Mexico and Alaska with contrasting climates, ecologies, and morphologies. The M-ICOS method allowed for the determination of dissolved methane and carbon dioxide concentrations with a frequency of 1 Hz and with a method detection limit of 2.76 × 10(-10) mol L(-1) for methane and 1.5 × 10(-7) mol L(-1) for carbon dioxide. These detection limits are below saturated concentrations with respect to the atmosphere and significantly lower than the minimum concentrations previously reported in lakes. The method is easily operable by a single person from a small boat, and the small size of the suction probe allows the determination of dissolved gases with a minimized impact on shallow freshwater ecosystems.


Assuntos
Dióxido de Carbono/análise , Lagos/química , Metano/análise , Alaska , Ecossistema , Membranas Artificiais , México , Análise Espectral/instrumentação , Análise Espectral/métodos
3.
Sci Total Environ ; 825: 154074, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217060

RESUMO

Coastal aquatic ecosystems such as estuaries and coastal lagoons are important atmospheric methane sources that must be better constrained. This work presents a detailed characterization of the methane cycle in a tropical coastal lagoon (La Mancha, Veracruz, Mexico) and its tributary river over three distinct seasons, along a transect from the river to the sea connection. In addition to several physicochemical parameters, the dissolved methane, carbon dioxide, and oxygen concentrations were measured with high resolution in the sediments and the water column, combined with production/uptake rates. Methane and carbon dioxide cycles were further constrained by determining atmospheric flux over the entire river and lagoon sections. The results indicate that La Mancha is a highly contrasted ecosystem. The river section is characterized by a strong pycnocline, relatively high methane concentration, and active methanogenesis and methanotrophy, discharging into a relatively homogeneous lagoon section where the methane and carbon cycles are less active. Overall, both the river and the lagoon were a net source of methane and carbon dioxide, with an annual emission of 2.9 metric tons of methane and 2757 metric tons of carbon dioxide. The spatial structure of the main components of the methane, carbon dioxide, and oxygen cycles was established, and it was observed that depthwise heterogeneities predominated in the river section. In contrast, lengthwise heterogeneities dominated in the lagoon section.


Assuntos
Ecossistema , Metano , Dióxido de Carbono , Oxigênio , Rios , Estações do Ano
4.
Water Res ; 196: 117056, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774352

RESUMO

The impact of cultural eutrophication on carbon cycling in subtropical reservoirs was assessed using high-resolution measurements of dissolved gas concentration, atmospheric exchange, and uptake/production rates of methane, carbon dioxide, and oxygen. Seasonal measurements were performed in two reservoirs that pertain to the same hydrological basin but are drastically different in terms of allochthonous carbon input. These results were used to feed a mass balance model, from which a large number of overall parameters were determined to explicitly describe the dynamics and spatial attributes of the carbon cycle in the reservoirs. A single graphical representation of each reservoir was created to facilitate an overall appraisal of the carbon cycle. The impact of cultural eutrophication was profound and resulted in a complete redistribution of how the various bioprocesses participated in the methane, carbon dioxide, and oxygen cycles. Among several identified impacts of eutrophication, it was observed that while eutrophication triggered increased methane production, this effect was followed by a similar increase in methane emissions and methanotrophic rates, while gross primary production was depleted.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental , Eutrofização , Gases de Efeito Estufa/análise , Metano/análise , Oxigênio
5.
Waste Manag ; 121: 373-382, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422924

RESUMO

A previously developed surface probe method, which allows for instantaneous methane (CH4) flux measurement, was used to establish CH4 emission maps of a municipal landfill with a final clay cover and equipped with a gas recollection system. In addition to spatial variations, the method was applied at 7 different times over a total timeframe of 65 h and under similar weather conditions to determine the intrinsic temporal variations of CH4 emissions; i.e., the temporal variation related to the dynamic of the landfill rather than the one driven by external factors. Furthermore, continuous CH4 fluxes, with a data acquisition frequency of 1 Hz, were measured during 12 h at a single position, and for one hour at 22 locations of the landfill, spanning a large range of CH4 emission magnitudes. A simple model for the numerical characterization of spatiotemporal variability of the landfill emission was used and allowed us to separately quantify the temporal and spatial variability. This model showed that, in the landfill tested, the temporal distribution of CH4 emissions resulted more homogeneous than the spatial distribution. Other attributes of the temporal and spatial distributions of CH4 emissions were also established including the anisotropic nature of the spatial distribution and, contrastingly, the stochastic temporal variability of such emissions.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Metano/análise , Instalações de Eliminação de Resíduos
6.
Sci Total Environ ; 666: 1255-1264, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970490

RESUMO

The Cuatro Cienegas Basin (CCB) in the Chihuahuan desert is characterized by the presence of over 500 ponds located in an endorheic basin. These ponds are subsaline ecosystems characterized by a low productivity and a particularly high sulfate concentration, comparable to marine environments. This study focused on assessing the main physicochemical parameters in these ponds along with the characterization of the CH4 dynamics through the determination of fluxes, dissolved CH4 concentrations, and net methanotrophic and methanogenic activity. Despite a sulfate concentration ranging from 1.06 to 4.73 g L-1, the studied ponds showed moderate but clear CH4 production and emission, which suggests that methanogenesis is not completely outcompeted by sulfate reduction. CH4 fluxes ranged from 0.12 to 0.98 mg m-2 d-1, which falls within the higher range of marine emissions and within the lower range reported for coastal saline lagoons and saline ponds. During summer, significant CH4 production in the oxic water column was observed. In addition to CH4, CO2 fluxes were determined at levels from 0.2 to 53 g m-2 d-1, which is within the range recorded for saline lakes in other parts of the world. Our results provide additional evidence that subsaline/saline aquatic ecosystems play an important role in the emission of greenhouse gases to the atmosphere.

7.
Waste Manag ; 55: 299-305, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26973281

RESUMO

A surface probe method previously developed was used to detect hotspots and to determine spatial variation of methane (CH4) emissions from three landfills located in Mexico, with an intermediate or a final cover, as well as with or without a landfill gas collection system. The method was effective in the three landfills and allowed mapping of CH4 emissions with a resolution of 24-64 measurements per hectare, as well as the detection and quantification of hotspots, with a moderate experimental effort. In the three selected landfills, CH4 emissions were quantified to 10, 72, and 575gm(-2)d(-1). Two straightforward parameters describing the spatial distribution of CH4 emissions were also developed. The first parameter provides the percentage of area responsible for a given percentage of total emissions, while the second parameter assigns a numerical value to flux homogeneity. Together, the emissions map and the spatial distribution parameters offer an appropriate tool to landfill operators willing to begin recovering CH4 emissions or to improve the effectiveness of an existing recovery system. This method may therefore help to reduce the greenhouse gas footprint of landfills, which are still the primary option for waste management in developing countries.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , México , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA