Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(6): e0044423, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506530

RESUMO

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Assuntos
Proteínas de Bactérias , Heme , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Heme/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Hemeproteínas/metabolismo , Hemeproteínas/genética , Hemeproteínas/química , Ligação Proteica , Proteobactérias/metabolismo , Proteobactérias/genética
2.
Appl Environ Microbiol ; : e0052824, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916293

RESUMO

Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.

3.
Periodontol 2000 ; 86(1): 14-31, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33690897

RESUMO

The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.


Assuntos
Bactérias , Microbiota , Animais , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Simbiose
4.
Environ Microbiol ; 22(12): 5433-5449, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078552

RESUMO

Xenorhabdus nematophila bacteria are mutualists of Steinernema carpocapsae nematodes and pathogens of insects. Xenorhabdus nematophila exhibits phenotypic variation between insect virulence (V) and the mutualistic (M) support of nematode reproduction and colonization initiation in the infective juvenile (IJ) stage nematode that carries X. nematophila between insect hosts. The V and M phenotypes occur reciprocally depending on levels of the transcription factor Lrp: high-Lrp expressors are M+V- while low-Lrp expressors are V+M-. We report here that variable (wild type) or fixed high-Lrp expressors also are optimized, relative to low- or no-Lrp expressors, for colonization of additional nematode stages: juvenile, adult and pre-transmission infective juvenile (IJ). In contrast, we found that after the bacterial population had undergone outgrowth in mature IJs, the advantage for colonization shifted to low-Lrp expressors: fixed low-Lrp expressors (M-V+) and wild type (M+V+) exhibited higher average bacterial CFU per IJ than did high-Lrp (M+V-) or no-Lrp (M-V-) strains. Further, the bacterial population becomes increasingly low-Lrp expressing, based on expression of an Lrp-dependent fluorescent reporter, as IJs age. These data support a model that virulent X. nematophila have a selective advantage and accumulate in aging IJs in advance of exposure to insect hosts in which this phenotype is necessary.


Assuntos
Proteínas de Bactérias/metabolismo , Insetos/parasitologia , Rabditídios/microbiologia , Fatores de Transcrição/metabolismo , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/genética , Insetos/microbiologia , Estágios do Ciclo de Vida , Fenótipo , Rabditídios/crescimento & desenvolvimento , Simbiose , Fatores de Transcrição/genética , Virulência , Xenorhabdus/genética , Xenorhabdus/patogenicidade
5.
Microbiology (Reading) ; 166(11): 1074-1087, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064635

RESUMO

Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.


Assuntos
Bacteriocinas/metabolismo , Interações Microbianas , Xenorhabdus/fisiologia , Animais , Antibacterianos/metabolismo , Antibiose , Bacteriocinas/genética , Bacteriófago P2/genética , Manduca/microbiologia , Mutação , Nematoides/microbiologia , Prófagos/genética , Xenorhabdus/genética , Xenorhabdus/metabolismo
6.
Environ Microbiol ; 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799156

RESUMO

Bacterial symbionts can affect several biotic interactions of their hosts, including their competition with other species. Nematodes in the genus Steinernema utilize Xenorhabdus bacterial symbionts for insect host killing and nutritional bioconversion. Here, we establish that the Xenorhabdus bovienii bacterial symbiont (Xb-Sa-78) of Steinernema affine nematodes can impact competition between S. affine and S. feltiae by a novel mechanism, directly attacking its nematode competitor. Through co-injection and natural infection assays we demonstrate the causal role of Xb-Sa-78 in the superiority of S. affine over S. feltiae nematodes during competition. Survival assays revealed that Xb-Sa-78 bacteria kill reproductive life stages of S. feltiae. Microscopy and timed infection assays indicate that Xb-Sa-78 bacteria colonize S. feltiae nematode intestines, which alters morphology of the intestine. These data suggest that Xb-Sa-78 may be an intestinal pathogen of the non-native S. feltiae nematode, although it is a nonharmful colonizer of the native nematode host, S. affine. Screening additional X. bovienii isolates revealed that intestinal infection and killing of S. feltiae is conserved among isolates from nematodes closely related to S. affine, although the underlying killing mechanisms may vary. Together, these data demonstrate that bacterial symbionts can modulate competition between their hosts, and reinforce specificity in mutualistic interactions.

7.
Annu Rev Microbiol ; 67: 161-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799814

RESUMO

Microbial symbioses, in which microbes have either positive (mutualistic) or negative (parasitic) impacts on host fitness, are integral to all aspects of biology, from ecology to human health. In many well-studied cases, microbial symbiosis is characterized by a specialized association between a host and a specific microbe that provides it with one or more beneficial functions, such as novel metabolic pathways or defense against pathogens. Even in relatively simple associations, symbiont-derived benefits can be context dependent and influenced by other host-associated or environmental microbes. Furthermore, naturally occurring symbioses are typically complex, in which multiple symbionts exhibit coordinated, competing, or independent influences on host physiology, or in which individual symbionts affect multiple interacting hosts. Here we describe research on the mechanisms and consequences of multipartite symbioses, including consortia in which multiple organisms interact with the host and one another, and on conditional mutualists whose impact on the host depends on additional interacting organisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Simbiose , Evolução Biológica , Ecossistema , Humanos
8.
J Bacteriol ; 199(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28484049

RESUMO

In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis.


Assuntos
Adaptação Biológica , Rabditídios/microbiologia , Simbiose , Xenorhabdus/genética , Xenorhabdus/fisiologia , Adaptação Fisiológica , Animais
9.
BMC Genomics ; 18(1): 927, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191166

RESUMO

BACKGROUND: Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS: Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS: The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.


Assuntos
Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Tylenchida/microbiologia , Tylenchida/fisiologia , Xenorhabdus/patogenicidade , Aedes , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Genoma Bacteriano , Proteínas de Fluorescência Verde/metabolismo , Lepidópteros/efeitos dos fármacos , Lepidópteros/imunologia , Lepidópteros/microbiologia , Masculino , Filogenia , Locos de Características Quantitativas , Simbiose , Tylenchida/efeitos dos fármacos , Tylenchida/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xenorhabdus/classificação , Xenorhabdus/genética , Xenorhabdus/fisiologia
10.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411220

RESUMO

In the entomopathogenic bacterium Xenorhabdus nematophila, cell-to-cell variation in the abundance of the Lrp transcription factor leads to virulence modulation; low Lrp levels are associated with a virulent phenotype and suppression of antimicrobial peptides (AMPs) in Manduca sexta insects, while cells that lack lrp or express high Lrp levels are virulence attenuated and elicit AMP expression. To better understand the basis of these phenotypes, we examined X. nematophila strains expressing fixed Lrp levels. Unlike the lrp-null mutant, the high-lrp strain is fully virulent in Drosophila melanogaster, suggesting that these two strains have distinct underlying causes of virulence attenuation in M. sexta Indeed, the lrp-null mutant was defective in cytotoxicity against M. sexta hemocytes relative to that in the high-lrp and low-lrp strains. Further, supernatant derived from the lrp-null mutant but not from the high-lrp strain was defective in inhibiting weight gain when fed to 1st instar M. sexta These data suggest that contributors to the lrp-null mutant virulence attenuation phenotype are the lack of Lrp-dependent cytotoxic and extracellular oral growth inhibitory activities, which may be particularly important for virulence in D. melanogaster In contrast, the high-Lrp strain was sensitive to the antimicrobial peptide cecropin, had a transient survival defect in M. sexta, and had reduced extracellular levels of insecticidal activity, measured by injection of supernatant into 4th instar M. sexta Thus, high-lrp strain virulence attenuation may be explained by its hypersensitivity to M. sexta host immunity and its inability to secrete one or more insecticidal factors.IMPORTANCE Adaptation of a bacterial pathogen to host environments can be achieved through the coordinated regulation of virulence factors that can optimize success under prevailing conditions. In the insect pathogen Xenorhabdus nematophila, the global transcription factor Lrp is necessary for virulence when injected into Manduca sexta or Drosophila melanogaster insect hosts. However, high levels of Lrp, either naturally occurring or artificially induced, cause attenuation of X. nematophila virulence in M. sexta but not D. melanogaster Here, we present evidence suggesting that the underlying cause of high-Lrp-dependent virulence attenuation in M. sexta is hypersensitivity to host immune responses and decreased insecticidal activity and that high-Lrp virulence phenotypes are insect host specific. This knowledge suggests that X. nematophila faces varied challenges depending on the type of insect host it infects and that its success in these environments depends on Lrp-dependent control of a multifactorial virulence repertoire.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidade , Animais , Proteínas de Bactérias/genética , Drosophila melanogaster/microbiologia , Regulação Bacteriana da Expressão Gênica , Manduca/microbiologia , Fatores de Transcrição/genética , Virulência , Xenorhabdus/genética , Xenorhabdus/crescimento & desenvolvimento
11.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389546

RESUMO

Xenorhabdus nematophila bacteria are mutualistic symbionts of Steinernema carpocapsae nematodes and pathogens of insects. The X. nematophila global regulator Lrp controls the expression of many genes involved in both mutualism and pathogenic activities, suggesting a role in the transition between the two host organisms. We previously reported that natural populations of X. nematophila exhibit various levels of Lrp expression and that cells expressing relatively low levels of Lrp are optimized for virulence in the insect Manduca sexta The adaptive advantage of the high-Lrp-expressing state was not established. Here we used strains engineered to express constitutively high or low levels of Lrp to test the model in which high-Lrp-expressing cells are adapted for mutualistic activities with the nematode host. We demonstrate that high-Lrp cells form more robust biofilms in laboratory media than do low-Lrp cells, which may reflect adherence to host tissues. Also, our data showed that nematodes cultivated with high-Lrp strains are more frequently colonized than are those associated with low-Lrp strains. Taken together, these data support the idea that high-Lrp cells have an advantage in tissue adherence and colonization initiation. Furthermore, our data show that high-Lrp-expressing strains better support nematode reproduction than do their low-Lrp counterparts under both in vitro and in vivo conditions. Our data indicate that heterogeneity of Lrp expression in X. nematophila populations provides diverse cell populations adapted to both pathogenic (low-Lrp) and mutualistic (high-Lrp) states.IMPORTANCE Host-associated bacteria experience fluctuating conditions during both residence within an individual host and transmission between hosts. For bacteria that engage in evolutionarily stable, long-term relationships with particular hosts, these fluctuations provide selective pressure for the emergence of adaptive regulatory mechanisms. Here we present evidence that the bacterium Xenorhabdus nematophila uses various levels of the transcription factor Lrp to optimize its association with its two animal hosts, nematodes and insects, with which it behaves as a mutualist and a pathogen, respectively. Building on our previous finding that relatively low cellular levels of Lrp are optimal for pathogenesis, we demonstrate that, conversely, high levels of Lrp promote mutualistic activities with the Steinernema carpocapsae nematode host. These data suggest that X. nematophila has evolved to utilize phenotypic variation between high- and low-Lrp-expression states to optimize its alternating behaviors as a mutualist and a pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Rabditídios/microbiologia , Rabditídios/fisiologia , Simbiose , Fatores de Transcrição/metabolismo , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Virulência , Xenorhabdus/genética , Xenorhabdus/crescimento & desenvolvimento , Xenorhabdus/patogenicidade
12.
J Bacteriol ; 197(18): 3015-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26170407

RESUMO

UNLABELLED: The bacterium Xenorhabdus nematophila engages in phenotypic variation with respect to pathogenicity against insect larvae, yielding both virulent and attenuated subpopulations of cells from an isogenic culture. The global regulatory protein Lrp is necessary for X. nematophila virulence and immunosuppression in insects, as well as colonization of the mutualistic host nematode Steinernema carpocapsae, and mediates expression of numerous genes implicated in each of these phenotypes. Given the central role of Lrp in X. nematophila host associations, as well as its involvement in regulating phenotypic variation pathways in other bacteria, we assessed its function in virulence modulation. We discovered that expression of lrp varies within an isogenic population, in a manner that correlates with modulation of virulence. Unexpectedly, although Lrp is necessary for optimal virulence and immunosuppression, cells expressing high levels of lrp were attenuated in these processes relative to those with low to intermediate lrp expression. Furthermore, fixed expression of lrp at high and low levels resulted in attenuated and normal virulence and immunosuppression, respectively, and eliminated population variability of these phenotypes. These data suggest that fluctuating lrp expression levels are sufficient to drive phenotypic variation in X. nematophila. IMPORTANCE: Many bacteria use cell-to-cell phenotypic variation, characterized by distinct phenotypic subpopulations within an isogenic population, to cope with environmental change. Pathogenic bacteria utilize this strategy to vary antigen or virulence factor expression. Our work establishes that the global transcription factor Lrp regulates phenotypic variation in the insect pathogen Xenorhabdus nematophila, leading to attenuation of virulence and immunosuppression in insect hosts. Unexpectedly, we found an inverse correlation between Lrp expression levels and virulence: high levels of expression of Lrp-dependent putative virulence genes are detrimental for virulence but may have an adaptive advantage in other aspects of the life cycle. Investigation of X. nematophila phenotypic variation facilitates dissection of this phenomenon in the context of a naturally occurring symbiosis.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Transcrição/metabolismo , Xenorhabdus/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Virulência , Xenorhabdus/genética , Xenorhabdus/patogenicidade
13.
BMC Genomics ; 16: 889, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26525894

RESUMO

BACKGROUND: Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. METHODS: To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. RESULTS: The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. CONCLUSIONS: The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred. For example, diverse metabolic profiles among bacterial symbionts may have been selected by dissimilarities in nutritional requirements of their different nematode hosts. Similarly, factors involved in parasitism (e.g. immune suppression and microbial competition factors), likely differ based on evolution in response to naturally encountered organisms, such as insect hosts, competitors, predators or pathogens. This study provides insight into effectors of a symbiotic lifestyle, and also highlights that when mining Xenorhabdus species for novel natural products, including antibiotics and insecticidal toxins, analysis of multiple bacterial strains likely will increase the potential for the discovery of novel molecules.


Assuntos
Variação Genética , Genoma Bacteriano/genética , Simbiose/fisiologia , Xenorhabdus/genética , Simbiose/genética
14.
Mol Microbiol ; 93(5): 1026-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041533

RESUMO

The bacterium Xenorhabdus nematophila is a mutualist of entomopathogenic Steinernema carpocapsae nematodes and facilitates infection of insect hosts. X. nematophila colonizes the intestine of S. carpocapsae which carries it between insects. In the X. nematophila colonization-defective mutant nilD6::Tn5, the transposon is inserted in a region lacking obvious coding potential. We demonstrate that the transposon disrupts expression of a single CRISPR RNA, NilD RNA. A variant NilD RNA also is expressed by X. nematophila strains from S. anatoliense and S. websteri nematodes. Only nilD from the S. carpocapsae strain of X. nematophila rescued the colonization defect of the nilD6::Tn5 mutant, and this mutant was defective in colonizing all three nematode host species. NilD expression depends on the presence of the associated Cas6e but not Cas3, components of the Type I-E CRISPR-associated machinery. While cas6e deletion in the complemented strain abolished nematode colonization, its disruption in the wild-type parent did not. Likewise, nilD deletion in the parental strain did not impact colonization of the nematode, revealing that the requirement for NilD is evident only in certain genetic backgrounds. Our data demonstrate that NilD RNA is conditionally necessary for mutualistic host colonization and suggest that it functions to regulate endogenous gene expression.


Assuntos
Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Bacteriano/metabolismo , Rabditídios/microbiologia , Simbiose , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Elementos de DNA Transponíveis , Intestinos/microbiologia , Dados de Sequência Molecular , Mutagênese Insercional , RNA Bacteriano/genética , Rabditídios/fisiologia , Xenorhabdus/genética
15.
Chembiochem ; 16(5): 766-71, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25711603

RESUMO

Simple urea compounds ("phurealipids") have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Photorhabdus/química , Ureia/farmacologia , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Epóxido Hidrolases/metabolismo , Insetos , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/metabolismo
16.
Appl Environ Microbiol ; 80(14): 4277-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814780

RESUMO

Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors that X. nematophila encounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection, Staphylococcus saprophyticus was initially present and subsequently disappeared from the hemolymph, while Enterococcus faecalis proliferated. S. saprophyticus was sensitive to X. nematophila antibiotics and was eliminated from the hemolymph when coinjected with X. nematophila. In contrast, E. faecalis was relatively resistant to X. nematophila antibiotics. When injected by itself, E. faecalis persisted (~10(3) CFU/ml), but when coinjected with X. nematophila, it proliferated to ~10(9) CFU/ml. Injection of E. faecalis into the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed when E. faecalis was coinjected with X. nematophila. Its relative antibiotic resistance together with suppression of the host immune system by X. nematophila may account for the growth of E. faecalis. At higher injected levels (10(6) CFU/insect), E. faecalis could kill insects, suggesting that it may contribute to virulence in an X. nematophila infection. These findings provide new insights into the competitive events that occur early in infection after S. carpocapsae invades the host hemocoel.


Assuntos
Hemolinfa/microbiologia , Manduca/microbiologia , Manduca/parasitologia , Nematoides/patogenicidade , Xenorhabdus/patogenicidade , Animais , Antibacterianos/farmacologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/isolamento & purificação , Intestinos/microbiologia , Intestinos/parasitologia , Larva/microbiologia , Larva/parasitologia , Testes de Sensibilidade Microbiana , Dinâmica Populacional , Simbiose , Xenorhabdus/crescimento & desenvolvimento , Xenorhabdus/isolamento & purificação
17.
Cell Microbiol ; 15(9): 1545-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23480552

RESUMO

The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate and species-specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species-specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal-intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species-specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by theirSteinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces.


Assuntos
Rabditídios/crescimento & desenvolvimento , Rabditídios/microbiologia , Simbiose , Xenorhabdus/isolamento & purificação , Xenorhabdus/fisiologia , Animais , Sistema Digestório/microbiologia , Células Epiteliais/microbiologia , Xenorhabdus/classificação
18.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38371317

RESUMO

Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes' anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S . hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles.

19.
Chembiochem ; 14(15): 1991-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24038745

RESUMO

Six novel linear peptides, named "rhabdopeptides", have been identified in the entomopathogenic bacterium Xenorhabdus nematophila after the discovery of the corresponding rdp gene cluster by using a promoter trap strategy for the detection of insect-inducible genes. The structures of these rhabdopeptides were deduced from labeling experiments combined with detailed MS analysis. Detailed analysis of an rdp mutant revealed that these compounds participate in virulence towards insects and are produced upon bacterial infection of a suitable insect host. Furthermore, two additional rhabdopeptide derivatives produced by Xenorhabdus cabanillasii were isolated, these showed activity against insect hemocytes thereby confirming the virulence of this novel class of compounds.


Assuntos
Antiprotozoários/metabolismo , Manduca/microbiologia , Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Xenorhabdus/metabolismo , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Peptídeo Sintases/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Especificidade da Espécie , Fatores de Virulência/química , Xenorhabdus/fisiologia
20.
RNA ; 17(9): 1635-47, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21768221

RESUMO

Over the past decade, a number of biocomputational tools have been developed to predict small RNA (sRNA) genes in bacterial genomes. In this study, several of the leading biocomputational tools, which use different methodologies, were investigated. The performance of the tools, both individually and in combination, was evaluated on ten sets of benchmark data, including data from a novel RNA-seq experiment conducted in this study. The results of this study offer insight into the utility as well as the limitations of the leading biocomputational tools for sRNA identification and provide practical guidance for users of the tools.


Assuntos
Biologia Computacional/métodos , Genes Bacterianos , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Bases de Dados Genéticas , RNA de Transferência/genética , Análise de Sequência de RNA , Software , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA