Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 322(1): 109-20, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18674529

RESUMO

The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation.


Assuntos
Cóclea/embriologia , Neurônios Aferentes/citologia , Vestíbulo do Labirinto/embriologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Movimento Celular/fisiologia , Embrião de Galinha , Cóclea/citologia , Cóclea/inervação , Epitélio/embriologia , Epitélio/inervação , Corantes Fluorescentes , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/fisiologia , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Vestíbulo do Labirinto/citologia , Vestíbulo do Labirinto/inervação
2.
Hear Res ; 196(1-2): 19-25, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15464297

RESUMO

Insulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-1 gene causes sensory-neural deafness. IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actions of IGF-I in the inner ear suggest that this factor may have therapeutic potential for the treatment of hearing loss.


Assuntos
Orelha Interna/embriologia , Fator de Crescimento Insulin-Like I/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Senescência Celular/fisiologia , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia
3.
Curr Pharm Des ; 13(7): 687-703, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17346184

RESUMO

Insulin-like growth factor-I (IGF-I) is widely expressed during development, and is actively involved in the regulation of cell growth, proliferation, and differentiation. Underlying these activities is the capacity of IGF-I to promote survival in a variety of cell types, including those of the nervous system. However, in adult tissues deregulation of the IGF system can cause undesired cell survival and therefore excessive cell proliferation. Here, we review the contribution of IGF-I in developmental processes with a focus on the development of the inner ear, as well as pathological implications resulting from IGF-I deregulation during cancer.


Assuntos
Apoptose , Transformação Celular Neoplásica/metabolismo , Neoplasias , Somatomedinas , Animais , Apoptose/fisiologia , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/patologia , Orelha Interna/embriologia , Orelha Interna/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/metabolismo , Somatomedinas/fisiologia , Fatores de Transcrição/metabolismo
4.
Hepatology ; 35(6): 1381-91, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12029623

RESUMO

Regulation of liver cell proliferation is a key event to control organ size during development and liver regeneration. Methionine adenosyltransferase (MAT) 2A is expressed in proliferating liver, whereas MAT1A is the form expressed in adult quiescent hepatocytes. Here we show that, in H35 hepatoma cells, growth factors such as hepatocyte growth factor (HGF) and insulin up-regulated MAT2A expression. HGF actions were time- and dose-response dependent and required transcriptional activity. Mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-phosphate kinase (PI 3-K) pathways were required for both HGF-induced cell proliferation and MAT2A up-regulation. Furthermore, in H35 cells treated with HGF, the inhibition of these pathways was associated with the switch from the expression of fetal liver MAT2A to the adult liver MAT1A isoform. Fetal liver hepatocytes exhibited an identical response pattern. Treatment of H35 hepatoma cells with MAT2A antisense oligonucleotides decreased cell proliferation induced by HGF; this decrease correlated with the decay in MAT2A messenger RNA (mRNA) levels. Finally, growth inhibitors such as transforming growth factor (TGF) beta blocked HGF-induced MAT2A up-regulation while increasing MAT1A mRNA levels in H35 cells. In conclusion, our results show that MAT2A expression not only correlates with liver cell proliferation but is required for this process.


Assuntos
Fígado/citologia , Fígado/enzimologia , Metionina Adenosiltransferase/genética , Animais , Carcinoma Hepatocelular , Divisão Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fator de Crescimento de Hepatócito/farmacologia , Fígado/embriologia , Neoplasias Hepáticas , Masculino , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Células Tumorais Cultivadas , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA