Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(12): e1008210, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834912

RESUMO

There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.


Assuntos
Vírion/fisiologia , Vespas/genética , Vespas/virologia , Animais , Genes Virais/genética , Polydnaviridae/genética , Interferência de RNA
2.
Environ Microbiol ; 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585387

RESUMO

Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%-20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.

4.
Virologie (Montrouge) ; 19(1): 19-31, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065897

RESUMO

Densoviruses (DVs) are parvoviruses of arthropods and causative agents of natural epizootics in insects and crustaceans populations. Structurally simple, these small DNA viruses, display a large diversity of genomic sequences, structures and organizations. Such diversity, together with the diversity of their invertebrate hosts, from shrimps to mosquitoes and recently including sea stars, suggests that DVs are largely unknown and ubiquitous in the environment. Densoviruses are considered as a model of choice to study virus-host interactions and their evolution at different scales, from individuals to populations. This review summarizes the knowledge on densovirus biology obtained through mechanistic and global approaches. Finally, the potential use of these viruses as biological control agents against insect pests and disease-vectors are exposed.

6.
BMC Genomics ; 15: 704, 2014 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-25149648

RESUMO

BACKGROUND: Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. RESULTS: In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. CONCLUSION: We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Assuntos
Perfilação da Expressão Gênica/normas , Spodoptera/genética , Transcriptoma , Animais , Genes de Insetos , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Anotação de Sequência Molecular , Padrões de Referência , Olfato/genética , Spodoptera/metabolismo
7.
Viruses ; 14(5)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35632685

RESUMO

Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.


Assuntos
Inseticidas , Controle de Pragas , Vírus , Cálcio/metabolismo , Inseticidas/farmacologia , Controle de Pragas/métodos , Proteínas Virais , Vírus/metabolismo
8.
Curr Biol ; 32(6): 1319-1331.e5, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134330

RESUMO

Wolbachia are widespread endosymbiotic bacteria that manipulate the reproduction of arthropods through a diversity of cellular mechanisms. In cytoplasmic incompatibility (CI), a sterility syndrome originally discovered in the mosquito Culex pipiens, uninfected eggs fertilized by sperm from infected males are selectively killed during embryo development following the abortive segregation of paternal chromosomes in the zygote. Despite the recent discovery of Wolbachia CI factor (cif) genes, the mechanism by which they control the fate of paternal chromosomes at fertilization remains unknown. Here, we have analyzed the cytological distribution and cellular impact of CidA and CidB, a pair of Cif proteins from the Culex-infecting Wolbachia strain wPip. We show that expression of CidB in Drosophila S2R+ cells induces apoptosis unless CidA is co-expressed and associated with its partner. In transgenic Drosophila testes, both effectors colocalize in germ cells until the histone-to-protamine transition in which only CidB is retained in maturing spermatid nuclei. We further show that CidB is similarly targeted to maturing sperm of naturally infected Culex mosquitoes. At fertilization, CidB associates with paternal DNA regions exhibiting DNA replication stress, as a likely cause of incomplete replication of paternal chromosomes at the onset of the first mitosis. Importantly, we demonstrate that inactivation of the deubiquitylase activity of CidB does not abolish its cell toxicity or its ability to induce CI in Drosophila. Our study thus demonstrates that CI functions as a transgenerational toxin-antidote system and suggests that CidB acts by poisoning paternal DNA replication in incompatible crosses.


Assuntos
Culex , Wolbachia , Animais , Culex/genética , Citoplasma , Citosol , Drosophila , Masculino , Wolbachia/genética
9.
Sci Rep ; 10(1): 18654, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122748

RESUMO

Urban Aedes mosquitoes are vectors of many viruses affecting human health such as dengue, chikungunya and Zika viruses. Insecticide resistance and environmental toxicity risks hamper the effectiveness of chemical control against these mosquito vectors. Alternative control methods, such as the use of mosquito-specific entomopathogenic viruses should be explored. Numerous studies have focused on evaluating the potential of different densoviruses species as biological control agents. However, knowledge on the extent of inter- and intra-specific variations in the susceptibility of Aedes mosquitoes to infection by different densoviruses remains insufficient. In this study, we compared infection and mortality rates induced by the Aedes albopictus densovirus 2 in different strains of Aedes albopictus and Aedes aegypti mosquitoes. The two Aedes species were different in terms of susceptibility to viral infection. Under laboratory conditions, Aedes albopictus densovirus 2 appeared more virulent for the different strains of Aedes aegypti tested than for those of Aedes albopictus. In addition, we also found significant intra-specific variation in infection and mortality rates. Thus, although even if Aedes albopictus densoviruses could be powerful biocontrol agents used in the management of urban Aedes populations, our results also call into question the use of single viral isolate as biocontrol agents.


Assuntos
Aedes/virologia , Densovirus/isolamento & purificação , Aedes/crescimento & desenvolvimento , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Carga Viral
10.
Virus Evol ; 5(2): vez053, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31807318

RESUMO

Viruses of the Parvoviridae family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses-namely densoviruses-have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, Culex pipiens densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide. CpDV diversity generally grouped in two clades, here named CpDV-1 and -2. The incongruence of the different gene trees for some samples suggested the possibility of recombination events between strains from different clades. We further investigated the role of selection on the evolution of CpDV genome and detected many individual sites under purifying selection both in non-structural and structural genes. However, some sites in structural genes were under diversifying selection, especially during the divergence of CpDV-1 and -2 clades. These substitutions between CpDV-1 and -2 clades were mostly located in the capsid protein encoding region and might cause changes in host specificity or pathogenicity of CpDV strains from the two clades. However, additional functional and experimental studies are necessary to fully understand the protein conformations and the resulting phenotype of these substitutions between clades of CpDV.

11.
Viruses ; 11(9)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533310

RESUMO

The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests.


Assuntos
Densovirus/fisiologia , Controle Biológico de Vetores , Polissacarídeos/metabolismo , Spodoptera/virologia , Animais , Perfilação da Expressão Gênica , Proteômica
12.
Viruses ; 11(8)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443175

RESUMO

Viruses are able to evolve in vitro by mutations after serial passages in cell cultures, which can lead to either a loss, or an increase, of virulence. Cyprinid herpesvirus 3 (CyHV-3), a 295-kb double-stranded DNA virus, is the etiological agent of the koi herpesvirus disease (KHVD). To assess the influence of serial passages, an isolate of CyHV-3 (KHV-T) was passaged 99 times onto common carp brain (CCB) cells, and virus virulence was evaluated during passages through the experimental infections of common carp. After 78 CCB passages, the isolate was much less virulent than the original form. A comparative genomic analysis of these three forms of KHV-T (P0, P78 and P99) revealed a limited number of variations. The largest one was a deletion of 1363 bp in the predicted ORF150, which was detected in P78, but not in P99. This unexpected finding was confirmed by conventional PCR and digital PCR. The results presented here primarily suggest that, CyHV-3 evolves, at least in vitro, through an assemblage of haplotypes that alternatively become dominant or under-represented.


Assuntos
Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Animais , Evolução Biológica , Carpas/virologia , Haplótipos , Herpesviridae/classificação , Herpesviridae/crescimento & desenvolvimento , Herpesviridae/patogenicidade , Infecções por Herpesviridae/virologia , Fases de Leitura Aberta , Inoculações Seriadas , Virulência
13.
Virology ; 405(2): 439-47, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20633915

RESUMO

Sendai virus (SeV) HN protein is dispensable for virus particle production. HN incorporation into virions strictly depends on a cytoplasmic domain SYWST motif. HNAFYKD, with SYWST replaced with the analogous sequence of measles virus (MeV) H (AFYKD), is not incorporated in virus particles produced by LLCMK2 cells, although it is normally expressed at the plasma membrane. Unlike HNSYWST, HNAFYKD is not internalized to late endosomes, raising the possibility that HN internalization is required for uptake into virus particles. Various mosaic MeV-H containing increasing amounts of the SeV-HN all failed to be taken up in SeV virions. However, when co-expressed with HNAFYKD these MeV-H chimera induced HNAFYKD uptake into virions showing that internalization is not a prerequisite for HN uptake into particles. We propose that HN incorporation in virus particles requires first neutralization by HN of a putative inhibitor of infectious particle formation.


Assuntos
Proteína HN/química , Proteína HN/metabolismo , Vírus Sendai/metabolismo , Vírus Sendai/patogenicidade , Vírion/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Rim/citologia , Rim/virologia , Recombinação Genética , Vírus Sendai/genética
14.
Virology ; 365(1): 101-12, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17467023

RESUMO

Closing the Sendai virus C protein open reading frames (rSeV-DeltaC virus) results in the production of virus particles with highly reduced infectivity. Besides, the Sendai virus C proteins interact with Alix/AIP1 and Alix suppression negatively affects Sendai virus like particle (VLP) budding. Similarly, the Sendai virus M protein has been shown to interact with Alix. On this basis, it has been suggested that Sendai virus budding involves recruitment of the multivesicular body formation machinery. We follow, here, the production of SeV particles upon regular virus infection. We find that neither Alix suppression nor dominant negative-VPS4A expression, applied separately or in combination, affects physical or infectious virion production. This contrasts with the observed decrease of SV5 virion production upon dominant negative-VPS4A expression. Finally, we show that suppression of more than 70% of a GFP/C protein in the background of a rSeV-DeltaC virus infection has no effect either on SeV particle production or on virus particle infectivity. Our results contrast with what has been published before. Possible explanations for this discrepancy are discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Infecções por Respirovirus/fisiopatologia , Vírus Sendai/fisiologia , Proteínas de Transporte Vesicular/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HeLa , Humanos , Fatores Hospedeiros de Integração/fisiologia , Fases de Leitura Aberta , Vírus Sendai/genética , ATPases Vacuolares Próton-Translocadoras , Vírion/fisiologia
15.
Virology ; 344(2): 296-303, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16229873

RESUMO

Detergent resistant membranes (DRMs) are the site of assembly for a variety of viruses. Here, we make use of Sendai virus mutant proteins that are not packaged into virus particles to determine the involvement of this assembly for the virus particle production. We found that, in the context of an infection, (1) all the Sendai virus proteins associated in part with DRMs, (2) mutant HN and M proteins not packaged into virus particles were similarly part of this association, (3) after M protein suppression resulting in a significant reduction of virus production, the floatation profile of the other viral proteins was not altered and finally (4) cellular cholesterol depletion did not decrease the virus particle production, although it somehow reduced their virus infectivity. These results led us to conclude that the assembly complex found in DRM fractions does not constitute a direct precursor of virus particle budding.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Detergentes/farmacologia , Vírus Sendai/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/deficiência , Colesterol/metabolismo , Resistência a Medicamentos , Vírus Sendai/metabolismo , Proteínas Virais/metabolismo , Vírion/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA