Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0276557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630457

RESUMO

Hunting has been crucial in early human evolution. Some San (Bushmen) of southern Africa still practice their indigenous hunting. The use of poisons is one remarkable aspect of their bow-and-arrow hunting but the sources, taxonomic identifications of species used, and recipes, are not well documented. This study reports on fieldwork to investigate recent indigenous hunting practices of G/ui and G//ana San communities in the Central Kalahari Game Reserve (CKGR), Botswana. Here we discuss their use of spider poison. The hunters use the contents of the opisthosoma ('abdomen') of a spider as sole ingredient of the arrow poison and discard the prosoma that contains the venom-glands. Using taxonomic keys, we identified the spider as the garden orb-web spider Argiope australis (Walckenaer 1805) (Araneidae). The hunters' choice of this species is remarkable given the scientific perception that A. australis is of little medical importance. The species choice raises questions about how the spider fluids could kill game, particularly when the prosoma, which contains the venom glands, is not used. Possibilities include trauma, as a source of pathogens, or abdomen-containing toxins. Based on characteristics of Argiope Audouin 1826, we hypothesize that the choice of this species for arrow poisons might have evolved from the recognition of aposematic signalling or spiritual symbolism. Indigenous knowledge (IK) is an important source for advances in biotechnology but is in decline worldwide. The study contributes to the documentation of the San people, and their ancient IK, which is threatened by marginalization, political pressures, and climate change.


Assuntos
Venenos , Aranhas , Animais , Humanos , Botsuana , Caça , África Austral
2.
Sci Total Environ ; 807(Pt 1): 150575, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634717

RESUMO

Increases in the frequency and magnitude of suboptimal temperatures as a result of climate change are subjecting insects to unprecedented stresses. This may negatively affect their fitness and the efficiency of their ecosystem service provision. Dung beetles are ecosystem service providers: through feeding on and burying dung, they facilitate nutrient recycling, secondary seed dispersal, parasite control, soil bioturbation and dung decomposition. As such, prediction of how dung beetles respond to multiple anthropogenic environmental changes is critical for the conservation of ecosystem services. Here, we quantified ecosystem services via dung utilisation and dung ball production in three telecoprid species: Allogymnopleurus indigaceous, Scarabaeus zambezianus and Khepher prodigiosus. We examined ecosystem service efficiency factorially under different beetle densities towards different dung masses and under three temperature treatments (21 °C, 28 °C and 35 °C). Khepher prodigiosus, exhibited greatest dung utilisation efficiency overall across dung masses, compared to both S. zambezianus and A. indigaceous. Dung removal was exhibited under all the tested temperatures by all tested species, and therefore the sub-optimal temperatures employed here did not fully inhibit ecosystem service delivery. However, emergent effects among temperatures, beetle species and beetle density further affected removal efficiency: S. zambezianus and A. indigaceous utilisation increased with both warming and beetle density, whereas K. prodigiosus performance was less temperature- and density-dependent. Beetles also tended to exhibit positive density-dependence as dung supply increased. The numbers of dung balls produced differed across species, and increased with temperature and densities, with S. zambezianus producing significantly most balls overall. Our study provides novel evidence for differential density-dependent ecosystem service delivery among species across stressful temperature regimes and emergent effects for dung mass utilisation. This information is essential for biodiversity-ecosystem-function and is critical for the conservation of functionally efficacious species, with implications for natural capital conservation policy in rapidly changing environments.


Assuntos
Besouros , Dispersão de Sementes , Animais , Biodiversidade , Ecossistema , Fezes , Temperatura
3.
Sci Rep ; 11(1): 22192, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772933

RESUMO

Tropical organisms are more vulnerable to climate change and associated heat stress as they live close to their upper thermal limits (UTLs). UTLs do not only vary little across tropical species according to the basal versus plasticity 'trade-off' theory but may also be further constrained by low genetic variation. We tested this hypothesis, and its effects on ecosystem function using a diurnally active dung rolling beetle (telecoprid), Allogymnopleurus thalassinus (Klug, 1855) that inhabits arid environments. Specifically, (i) we tested basal heat tolerance (critical thermal maxima [CTmax] and heat knockdown time [HKDT]), and (ii) ecological functioning (dung removal) efficiency following dynamic chronic acclimation temperatures of variable high (VT-H) (28-45 °C) and variable low (VT-L) (28-16 °C). Results showed that A. thalassinus had extremely high basal heat tolerance (> 50 °C CTmax and high HKDT). Effects of acclimation were significant for heat tolerance, significantly increasing and reducing CTmax values for variable temperature high and variable temperature low respectively. Similarly, effects of acclimation on HKDT were significant, with variable temperature high significantly increasing HKDT, while variable temperature low reduced HKDT. Effects of acclimation on ecological traits showed that beetles acclimated to variable high temperatures were ecologically more efficient in their ecosystem function (dung removal) compared to those acclimated at variable low temperatures. Allogymnopleurus thalassinus nevertheless, had low acclimation response ratios, signifying limited scope for complete plasticity for UTLs tested here. This result supports the 'trade-off' theory, and that observed limited plasticity may unlikely buffer A. thalassinus against effects of climate change, and by extension, albeit with caveats to other tropical ecological service providing insect species. This work provides insights on the survival mechanisms of tropical species against heat and provides a framework for the conservation of these natural capital species that inhabit arid environments under rapidly changing environmental climate.


Assuntos
Aclimatação , Besouros/fisiologia , Ecossistema , Termotolerância , Animais , Mudança Climática , Temperatura Alta
4.
Insect Sci ; 28(4): 1076-1086, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32567803

RESUMO

Although reports have documented loss of species diversity and ecological services caused by stressful temperature changes that result from climate change, some species cope through behavioral compensation. As temperatures and magnitudes of temperature extremes increase, animals should compensate to maintain fitness (such as through temporary behavioral shifts in activity times). Appropriate timing of activity helps avoid competition across species. Although coprophagic dung beetles exhibit species-specific temporal activity times, it is unknown whether temperature drives evolution of these species-specific temporal activity times. Using nine dung beetle species (three each of diurnal, crepuscular, and nocturnal species), we explored differences in heat stress tolerance measured as critical thermal maxima (CTmax ; the highest temperature allowing activity) and heat knockdown time (HKDT; survival time under acute heat stress) across these species, and examined the results using a phylogenetically informed approach. Our results showed that day-active species had significantly higher CTmax (diurnal > crepuscular = nocturnal species), whereas crepuscular species had higher HKDT (crepuscular > nocturnal > diurnal species). There was no correlation between heat tolerance and body size across species with distinct temporal activity, and no significant phylogenetic constraint for activity. Species with higher CTmax did not necessarily have higher HKDT, which indicates that species may respond differently to diverse heat tolerance metrics. Acute heat tolerance for diurnal beetles indicates that this trait may constrain activity time and, under high acute temperatures with climate change, species may shift activity times in more benign environments. These results contribute to elucidate the evolution of foraging behavior and management of coprophagic beetle ecosystem services under changing environments.


Assuntos
Besouros/fisiologia , Termotolerância , Animais , Biodiversidade , Evolução Biológica , Tamanho Corporal , Mudança Climática , Ecossistema , Comportamento Alimentar , Temperatura Alta , Filogenia
5.
J Econ Entomol ; 114(4): 1743-1751, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34231839

RESUMO

Temperature and dehydration stress are two major co-occurring environmental stressors threatening the physiology, biochemistry, and ecology of insects. As such, understanding adaptive responses to desiccation stress is critical for predicting climate change impacts, particularly its influence on insect invasions. Here, we assessed water balance and desiccation resistance of the invasive Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), and infer how eco-physiology shapes its niche. We measured basal body water and lipid content, water loss rates (WLRs), and desiccation resistance in larvae (second to fourth instars) and adults. Body -water, -lipid, and WLRs significantly varied across life stages. Second instars recorded the lowest while fourth instars exhibited the highest body water and lipid content. Adult body water and lipid content were higher than second and third instars and lower than fourth instars while proportion of body water and lipid contents were highest in adults and second larval instars respectively. Water loss rates were significantly highest in fourth-instar larvae compared to other life stages, but differences among stages were less apparent at longer exposure durations (48 h). Desiccation resistance assays showed that second instars had greatest mortality while fourth-instar larvae and adults were the most desiccation tolerant. Our results show that T. absoluta fourth-instar larvae and adults are the most resilient developmental stages and potentially contribute most to the invasion success of the pest in arid environments. Incorporation of these species-specific eco-physiological traits in predictive models can help refine invasive species potential spread under changing climates.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Dessecação , Enterobius , Larva , América do Sul , Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-33171954

RESUMO

Mosquitoes account for a significant burden of morbidity and mortality globally. Despite evidence of (1) imminent anthropogenic climate and environmental changes, (2) vector-pathogen spatio-temporal dynamics and (3) emerging and re-emerging mosquito borne infections, public knowledge on mosquito bio-ecology remain scant. In particular, knowledge, attitude and practices (KAPs) on mosquitoes are often neglected despite otherwise expensive remedial efforts against consequent infections and other indirect effects associated with disease burden. To gather baseline KAPs that identify gaps for optimising vector-borne disease control, we surveyed communities across endemic and non-endemic malaria sub-districts (Botswana). The study revealed limited knowledge of mosquitoes and their infections uniformly across endemic and non-endemic areas. In addition, a significant proportion of respondents were concerned about mosquito burdens, although their level of personal, indoor and environmental protection practices varied significantly across sub-districts. Given the limited knowledge displayed by the communities, this study facilitates bridging KAP gaps to minimise disease burdens by strengthening public education. Furthermore, it provides a baseline for future studies in mosquito bio-ecology and desirable control practices across differential spheres of the rural-urban lifestyle, with implications for enhanced livelihoods as a consequence of improved public health.


Assuntos
Culicidae , Controle de Mosquitos , Animais , Botsuana , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Mosquitos Vetores
7.
Int J Insect Sci ; 11: 1179543319863417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31488955

RESUMO

Since the first detection of Bactrocera dorsalis in Botswana in 2010, the establishment, spread, and response to prevailing Botswana microclimates under rapidly changing environments remain unknown. This study investigated the presence, seasonal population abundance, and thermal biology of B. dorsalis in Botswana. We measured B. dorsalis thermal tolerance vis critical thermal limits (CTLs) and lethal temperature assays (LTAs) to understand how temperature largely impacts on fitness and hence invasive potential. Seasonal monitoring results indicated B. dorsalis establishment in the Chobe district (its first area of detection). Trap catches showed continuous adult flies' presence all year round and high average monthly trap catches as compared with other districts. Furthermore, B. dorsalis was detected south of Botswana, including Kgatleng, Kweneng, South-east, and Southern districts. Critical thermal maxima (CTmax) to activity for adults and larvae were 46.16°C and 45.23°C, whereas critical thermal minima (CTmin) to activity for adults and larvae were 9.1°C and 7.3°C, respectively. Moreover, we found an improved CTmin for larvae at a slower ramping rate, indicating potential rapid cold hardening. The lower lethal temperature (LLT) and upper lethal temperature (ULT) assays revealed a reduction in survival at all the developmental stages as severity and duration of both temperature extremes increased. Microclimatic temperatures recorded in Botswana showed that environmental temperatures fall within the thermal breath of B. dorsalis activity measured here, indicating a potential conducive climate niche for the insect pest across the country, albeit other factors, e.g., host availability, play a significant role. These results therefore suggest that Botswana microclimatic temperatures aided B. dorsalis activity and invasion pathway are thus significant in mapping invasions and pest risk analysis, and may also aid in designing pest management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA