RESUMO
Orchidaceae has diversified in tree canopies and accounts for 68% of vascular epiphytes. Differences in mycorrhizal communities among epiphytic orchids can reduce species competition for mycorrhizal fungi and contribute to niche partitioning, which may be a crucial driver of the unusual species diversification among orchids. Mycorrhizal specificity-the range of fungi allowing mycorrhizal partnerships-was evaluated by assessment of mycorrhizal communities in the field (ecological specificity) and symbiotic cultures in the laboratory (physiological specificity) for three epiphytic orchids inhabiting Japan. Mycorrhizal communities were assessed with co-existing individuals growing within 10 cm of each other, revealing that ecological specificity varied widely among the three species, ranging from dominance by a single Ceratobasidiaceae fungus to diverse mycobionts across the Ceratobasidiaceae and Tulasnellaceae. In vitro seed germination tests revealed clear differences in physiological specificity among the three orchids, and that the primary mycorrhizal partners contributed to seed germination. In vitro compatibility ranges of three orchids strongly reflect the mycorrhizal community composition of wild populations. This suggests that differences in in situ mycorrhizal communities are not strongly driven by environmental factors, but are primarily due to physiological differences among orchid species. This study shows that the symbiotic strategy among the epiphytic orchid species varies from specialized to generalized association, which may contribute to biotic niche partitioning.
Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Humanos , Micorrizas/fisiologia , Simbiose , Orchidaceae/fisiologia , Ecossistema , Filogenia , Especificidade da EspécieRESUMO
Ricin toxin A chain (RTA), from Ricinus communis, is a deadly protein that inactivates ribosomes by degrading an adenine residue at position 4324 in 28S rRNA. Recently, we have demonstrated that pterin-7-carboxamides with peptide pendants were potent RTA inhibitors. Among these, N-(pterin-7-carbonyl)glycyl-L-tyrosine (7PCGY) is the most potent RTA inhibitor as a small organic molecule. However, despite this fascinating inhibitory activity, the mode of interaction of 7PCGY with RTA remains elusive. This study aimed to elucidate the factors responsible for the high RTA inhibitory activity of 7PCGY based on X-ray crystallographic analysis. Herein, we report the successfully resolved X-ray crystal structure of 7PCGY/RTA complexes, revealing that the interaction between the phenolic hydroxy group in 7PCGY and Asn78 of RTA through a hydrogen bonding and the conformational change of Tyr80 and Asn122 are responsible for the high RTA inhibitory activity of 7PCGY.
Assuntos
Ricina , Ricina/química , Ricina/genética , Ricina/metabolismo , Pterinas/química , Pterinas/farmacologia , Cristalografia por Raios X , PeptídeosRESUMO
Ricin toxin A-chain (RTA), a toxic protein from Ricinus communis, inactivates ribosomes to induce toxicity. The active site of RTA consists of two binding pockets. Many studies have focused on developing RTA inhibitors that can simultaneously bind to these critical pockets; however, almost all the inhibitors developed so far interact with only one pocket. In the present study, we discovered that pterin-7-carboxamides with aromatic l-amino acid pendants interacted with the active site of the enzyme in a 2-to-1 mode, where one inhibitor molecule bound to the primary pocket and the second one entered the secondary pocket in the active site of RTA. X-ray crystallographic analysis of inhibitor/RTA complexes revealed that the conformational changes of Tyr80 and Asn122 in RTA were critical for triggering the entry of inhibitor molecules into the secondary pocket of the RTA active site.
Assuntos
Ricina , Cristalografia por Raios X , Ribossomos/metabolismo , Ricina/química , Ricina/metabolismo , Ricina/toxicidadeRESUMO
Gluconobacter sp. strain CHM43 oxidizes mannitol to fructose and then oxidizes fructose to 5-keto-d-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here, we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP+-dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP+-dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the Km value for 5KF but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the Km value for 5KF, suggesting a catalytic mechanism similar to that of SDH. With these data taken together, we suggest that KFR is a new member of the SDH family. IMPORTANCE A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose, a potential low-calorie sweetener, at a high yield. Here, we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation, and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small subgroup of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved, and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.
Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Gluconobacter/enzimologia , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/classificação , Desidrogenases de Carboidrato/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Gluconobacter/genética , Gluconobacter/metabolismo , Modelos Moleculares , Filogenia , Conformação ProteicaRESUMO
Aldose reductase (AR) is associated with the onset of diabetic complications. Botryllazine A and its analogues were synthesized and evaluated for human AR inhibitory activity. Analogues possessing aromatic bicyclic systems at the C5 position of the central pyrazine ring exhibited superior AR inhibiting activity relative to the parent botryllazine A. In addition, the benzoyl groups at positions C2 and C3 of the pyrazine ring were dispensable for this improved inhibitory activity. Conversely, a benzoyl group-containing phenolic hydroxyl groups-at either position C2 or C3 of the pyrazine ring was essential for attainment of high inhibitory activity approaching that of sorbinil (a highly effective AR inhibitor).
Assuntos
Aldeído Redutase/metabolismo , Inibidores Enzimáticos/síntese química , Pirazinas/química , Aldeído Redutase/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Pirazinas/síntese química , Pirazinas/metabolismoRESUMO
MocR/GabR family proteins are widely distributed prokaryotic transcriptional regulators containing pyridoxal 5'-phosphate (PLP), a coenzyme form of vitamin B6. The Bacillus subtilisâ GabR, probably the most extensively studied MocR/GabR family protein, consists of an N-terminal DNA-binding domain and a PLP-binding C-terminal domain that has a structure homologous to aminotransferases. GabR suppresses transcription of gabR and activates transcription of gabT and gabD, which encode γ-aminobutyrate (GΑΒΑ) aminotransferase and succinate semialdehyde dehydrogenase, respectively, in the presence of PLP and GABA. In this study, we examined the mechanism underlying GabR-mediated gabTD transcription with spectroscopic, crystallographic and thermodynamic studies, focusing on the function of the aminotransferase domain. Spectroscopic studies revealed that GABA forms an external aldimine with the PLP in the aminotransferase domain. Isothermal calorimetry demonstrated that two GabR molecules bind to the 51-bp DNA fragment that contains the GabR-binding region. GABA minimally affected ΔG(binding) upon binding of GabR to the DNA fragment but greatly affected the contributions of ΔH and ΔS to ΔG(binding). GABA forms an external aldimine with PLP and causes a conformational change in the aminotransferase domain, and this change likely rearranges GabR binding to the promoter and thus activates gabTD transcription.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transaminases/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo , Transaminases/química , Fatores de Transcrição/genética , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0277770.].
RESUMO
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of D- and L-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to L-serine dehydrase; S81A showed no racemase activity and had significantly reduced D-serine dehydrase activity, but it completely retained its L-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove D-serine dehydration by abstracting the α-hydrogen in D-serine. Our data suggest that the abstraction and addition of α-hydrogen to L- and D-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.
Assuntos
Dictyostelium/enzimologia , Proteínas de Protozoários/química , Racemases e Epimerases/química , Sequência de Aminoácidos , Domínio Catalítico , Dicroísmo Circular , Dictyostelium/química , Dictyostelium/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismoRESUMO
D-Threonine aldolase (DTA) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes the reversible aldol reaction of glycine with a corresponding aldehyde to yield the D-form ß-hydroxy-α-amino acid. This study produced and investigated the crystal structure of DTA from Chlamydomonas reinhardtii (CrDTA) at 1.85â Å resolution. To our knowledge, this is the first report on the crystal structure of eukaryotic DTA. Compared with the structure of bacterial DTA, CrDTA has a similar arrangement of active-site residues. On the other hand, we speculated that some non-conserved residues alter the affinity for substrates and inhibitors. The structure of CrDTA could provide insights into the structural framework for structure-guided protein engineering studies to modify reaction selectivity.
Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Cristalografia por Raios X , Fosfato de Piridoxal/metabolismo , Fosfatos , Especificidade por SubstratoRESUMO
D-Serine is known to act as an endogenous co-agonist of the N-methyl-D-aspartate receptor in the mammalian brain and is endogenously synthesized from L-serine by a pyridoxal 5'-phosphate-dependent enzyme, serine racemase. Though the soil-living mycetozoa Dictyostelium discoideum possesses no genes homologous to that of NMDA receptor, it contains genes encoding putative proteins relating to the D-serine metabolism, such as serine racemase, D-amino acid oxidase, and D-serine dehydratase. D. discoideum is an attractive target for the elucidation of the unknown functions of D-serine such as a role in cell development. As part of the elucidation of the role of D-serine in D. discoideum, we cloned, overexpressed, and examined the properties of the putative serine racemase exhibiting 46% amino acid sequence similarity with the human enzyme. The enzyme is unique in its stimulation by monovalent cations such as Na(+) in addition to Mg(2+) and Ca(2+), which are well-known activators for the mammalian serine racemase. Mg(2+) or Na(+) binding caused two- to ninefold enhancement of the rates of both racemization and dehydration. The half-maximal activation concentrations of Mg(2+) and Na(+) were determined to be 1.2 µM and 2.2 mM, respectively. In the L-serine dehydrase reaction, Mg(2+) and Na(+) enhanced the k (cat) value without changing the K (m) value. Alanine mutation of the residues E207 and D213, which correspond to the Mg(2+)-binding site of Schizosaccharomyces pombe serine racemase, abolished the Mg(2+)- and Na(+)-dependent stimulation. These results suggest that Mg(2+) and Na(+) share the common metal ion-binding site.
Assuntos
Cálcio/química , Dictyostelium/enzimologia , Magnésio/química , Racemases e Epimerases/química , Serina/metabolismo , Sódio/química , Cátions Bivalentes , Cátions Monovalentes , Clonagem Molecular , Dictyostelium/química , Escherichia coli/genética , Cinética , Mutação , Fosfato de Piridoxal/química , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Homologia de Sequência de Aminoácidos , Serina/química , Estereoisomerismo , Água/químicaRESUMO
When overexpressed as an immature enzyme in the mesophilic bacterium Escherichia coli, recombinant homoserine dehydrogenase from the hyperthermophilic archaeon Sulfurisphaera tokodaii (StHSD) was markedly activated by heat treatment. Both the apo- and holo-forms of the immature enzyme were successively crystallized, and the two structures were determined. Comparison among the structures of the immature enzyme and previously reported structures of mature enzymes revealed that a conformational change in a flexible part (residues 160-190) of the enzyme, which encloses substrates within the substrate-binding pocket, is smaller in the immature enzyme. The immature enzyme, but not the mature enzyme, formed a complex that included NADP+, despite its absence during crystallization. This indicates that the opening to the substrate-binding pocket in the immature enzyme is not sufficient for substrate-binding, efficient catalytic turnover or release of NADP+. Thus, specific conformational changes within the catalytic region appear to be responsible for heat-induced activation.
Assuntos
Escherichia coli/enzimologia , Homosserina Desidrogenase/química , Homosserina Desidrogenase/metabolismo , Temperatura Alta , Sulfolobaceae/enzimologia , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , NADP/química , NADP/metabolismoRESUMO
The Ricin toxin A chain (RTA), which depurinates an adenine base at a specific region of the ribosome leading to death, has two adjacent specificity pockets in its active site. Based on this structural information, many attempts have been made to develop small-molecule RTA inhibitors that simultaneously block the two pockets. However, no attempt has been successful. In the present study, we synthesized pterin-7-carboxamides with tripeptide pendants and found that one of them interacts with both pockets simultaneously to exhibit good RTA inhibitory activity. X-ray crystallographic analysis of the RTA crystal with the new inhibitor revealed that the conformational change of Tyr80 is an important factor that allows the inhibitors to plug the two pockets simultaneously.
Assuntos
Ricina , Ricina/química , Pterinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ribossomos/metabolismoRESUMO
Selenocysteine lyase (SCL) catalyzes the pyridoxal 5'-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system.
Assuntos
Liases/química , Liases/metabolismo , Selênio/metabolismo , Enxofre/metabolismo , Substituição de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Cisteína/química , Primers do DNA/genética , Técnicas In Vitro , Liases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por SubstratoRESUMO
D-serine is an endogenous coagonist for the N-methyl-D-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5'-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of L-serine to yield D-serine and vice versa. The enzyme also catalyzes the dehydration of D- and L-serine. Both reactions are enhanced by Mg.ATP in vivo. We have determined the structures of the following three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe: the wild-type enzyme, the wild-type enzyme in the complex with an ATP analog, and the modified enzyme in the complex with serine at 1.7, 1.9, and 2.2 A resolution, respectively. On binding of the substrate, the small domain rotates toward the large domain to close the active site. The ATP binding site was identified at the domain and the subunit interface. Computer graphics models of the wild-type enzyme complexed with L-serine and D-serine provided an insight into the catalytic mechanisms of both reactions. Lys-57 and Ser-82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique "lysino-D-alanyl" residue at the active site, also exhibits catalytic activities. The crystal-soaking experiment showed that the substrate serine was actually trapped in the active site of the modified enzyme, suggesting that the lysino-D-alanyl residue acts as a catalytic base in the same manner as inherent Lys-57 of the wild-type enzyme.
Assuntos
Trifosfato de Adenosina/química , Racemases e Epimerases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Serina/química , Trifosfato de Adenosina/metabolismo , Animais , Catálise , Domínio Catalítico/fisiologia , Mamíferos , Estrutura Terciária de Proteína/fisiologia , Racemases e Epimerases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Serina/metabolismo , Homologia Estrutural de ProteínaRESUMO
D-Amino-acid oxidases (DAAOs) catalyze the oxidative deamination of neutral and basic D-amino acids. The DAAO from the thermophilic fungus Rasamsonia emersonii strain YA (ReDAAO) has a high thermal stability and a unique broad substrate specificity that includes the acidic D-amino acid D-Glu as well as various neutral and basic D-amino acids. In this study, ReDAAO was crystallized by the hanging-drop vapor-diffusion method and its crystal structure was determined at a resolution of 2.00â Å. The crystal structure of the enzyme revealed that unlike other DAAOs, ReDAAO forms a homotetramer and contains an intramolecular disulfide bond (Cys230-Cys285), suggesting that this disulfide bond is involved in the higher thermal stability of ReDAAO. Moreover, the structure of the active site and its vicinity in ReDAAO indicates that Arg97, Lys99, Lys114 and Ser231 are candidates for recognizing the side chain of D-Glu.
Assuntos
D-Aminoácido Oxidase/química , Eurotiales/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Dissulfetos/química , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Glutâmico/metabolismo , Modelos Moleculares , Conformação ProteicaRESUMO
Eukaryotic serine racemase (SR) is a pyridoxal 5'-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.
Assuntos
Desidratação , Eucariotos/enzimologia , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Serina/metabolismo , Animais , Catálise , Cristalização , Dictyostelium/enzimologia , Cinética , Camundongos , Modelos Moleculares , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato , Especificidade por SubstratoRESUMO
D-serine serves as a co-agonist of the N-methyl D-aspartate receptor in mammalian brains, and its behavior is probably related to neurological disorders such as schizophrenia, Alzheimer's disease and amyotrophic lateral sclerosis. D-Serine is synthesized by a pyridoxal 5'-phosphate (PLP)-dependent serine racemase. In this minireview, we provide a detailed discussion on the reaction mechanism of the PLP-dependent amino acid racemase on the basis of its 3D structure. We compared the eukaryotic serine racemase with bacterial alanine racemase, the best-studied enzyme among the PLP-dependent amino acid racemases, and thus suggested a putative reaction mechanism for mammalian D-serine synthesis.
Assuntos
Alanina Racemase/química , Fosfato de Piridoxal/química , Racemases e Epimerases/química , Serina/biossíntese , Isomerases de Aminoácido/química , Animais , Bactérias/enzimologia , Encéfalo/enzimologia , Isomerismo , Serina/químicaRESUMO
Homoserine dehydrogenase (EC 1.1.1.3, HSD) is an important regulatory enzyme in the aspartate pathway, which mediates synthesis of methionine, threonine and isoleucine from aspartate. Here, HSD from the hyperthermophilic archaeon Sulfolobus tokodaii (StHSD) was found to be inhibited by cysteine, which acted as a competitive inhibitor of homoserine with a Ki of 11 µM and uncompetitive an inhibitor of NAD and NADP with Ki's of 0.55 and 1.2 mM, respectively. Initial velocity and product (NADH) inhibition analyses of homoserine oxidation indicated that StHSD first binds NAD and then homoserine through a sequentially ordered mechanism. This suggests that feedback inhibition of StHSD by cysteine occurs through the formation of an enzyme-NAD-cysteine complex. Structural analysis of StHSD complexed with cysteine and NAD revealed that cysteine situates within the homoserine binding site. The distance between the sulfur atom of cysteine and the C4 atom of the nicotinamide ring was approximately 1.9 Å, close enough to form a covalent bond. The UV absorption-difference spectrum of StHSD with and without cysteine in the presence of NAD, exhibited a peak at 325 nm, which also suggests formation of a covalent bond between cysteine and the nicotinamide ring.
Assuntos
Cisteína/química , Cisteína/metabolismo , Homosserina Desidrogenase/química , Homosserina Desidrogenase/metabolismo , Substâncias Macromoleculares/química , NAD/química , NAD/metabolismo , Ligantes , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Análise EspectralRESUMO
D-Threonine aldolase from the green alga Chlamydomonas reinhardtii (CrDTA) catalyzes the interconversion of several ß-hydroxy-D-amino acids (e.g. D-threonine) and glycine plus the corresponding aldehydes. Recombinant CrDTA was overexpressed in Escherichia coli and purified to homogeneity; it was subsequently crystallized using the hanging-drop vapour-diffusion method at 295â K. Data were collected and processed at 1.85â Å resolution. Analysis of the diffraction pattern showed that the crystal belonged to space group P1, with unit-cell parameters a = 64.79, b = 74.10, c = 89.94â Å, α = 77.07, ß = 69.34, γ = 71.93°. The asymmetric unit contained four molecules of CrDTA. The Matthews coefficient was calculated to be 2.12â Å3â Da-1 and the solvent content was 41.9%.
Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/química , Glicina Hidroximetiltransferase/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/enzimologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difração de Raios XRESUMO
Aspartate racemase (AspR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90â Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the ß-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.