Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 26(2): 247-257, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32186276

RESUMO

Interfaces play critical roles in materials and are usually both structurally and compositionally complex microstructural features. The precise characterization of their nature in three-dimensions at the atomic scale is one of the grand challenges for microscopy and microanalysis, as this information is crucial to establish structure-property relationships. Atom probe tomography is well suited to analyzing the chemistry of interfaces at the nanoscale. However, optimizing such microanalysis of interfaces requires great care in the implementation across all aspects of the technique from specimen preparation to data analysis and ultimately the interpretation of this information. This article provides critical perspectives on key aspects pertaining to spatial resolution limits and the issues with the compositional analysis that can limit the quantification of interface measurements. Here, we use the example of grain boundaries in steels; however, the results are applicable for the characterization of grain boundaries and transformation interfaces in a very wide range of industrially relevant engineering materials.

2.
Sci Technol Adv Mater ; 18(1): 584-610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970868

RESUMO

We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

3.
Sci Data ; 10(1): 504, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516748

RESUMO

This article presents a collection of data on approximately 150 copper-based alloys. The data compilation is based on articles published since 1993 and consists of about 1830 records. Each record contains a unique set of descriptors, such as composition and processing route, and targets, including properties such as hardness, yield strength, ultimate tensile strength, and electrical conductivity. The dataset includes information on the composition in mass percent of 20 alloying elements, and hundreds of temperature-time thermal treatments and thermomechanical conditions. The database is continually updated and hosted on an open data repository. Some of the data are presented graphically in the article to aid interpretation. This study intends to promote the identification of more sustainable alternatives to Cu-Be alloys, which is particularly relevant in developing non-toxic and environmentally-friendly alloys.

4.
RSC Adv ; 13(37): 26041-26049, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664189

RESUMO

In the most recent electronic and electric sectors, ceramic-polymer nanocomposites with high dielectric permittivity and energy density are gaining popularity. However, the main obstacle to improving the energy density in flexible nanocomposites, besides the size and morphology of the ceramic filler, is the low interfacial compatibility between the ceramic and the polymer. This paper presents an alternative solution to improve the dielectric permittivity and energy storage properties for electronic applications. Here, the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix is filled with surface-modified BaTi0.89Sn0.11O3/polydopamine nanoparticles (BTS11) nanoparticles, which is known for exhibiting multiphase transitions and reaching a maximum dielectric permittivity at room temperature. BTS11 nanoparticles were synthesized by a sol-gel/hydrothermal method at 180 °C and then functionalized by polydopamine (PDA). As a result, the nanocomposites exhibit dielectric permittivity (εr) of 46 and a low loss tangent (tan δ) of 0.017 at 1 kHz at a relatively low weight fraction of 20 wt% of BTS11@PDA. This is approximately 5 times higher than the pure PVDF-HFP polymer and advantageous for energy storage density in nanocomposites. The recovered energy storage for our composites reaches 134 mJ cm-3 at an electric field of 450 kV cm-1 with a high efficiency of 73%. Incorporating PDA-modified BTS11 particles into the PVDF-HFP matrix demonstrates highly piezo-active regions associated with BTS11 particles, significantly enhancing functional properties in the polymer nanocomposites.

5.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341296

RESUMO

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

6.
RSC Adv ; 10(51): 30746-30755, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516015

RESUMO

Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) relaxor ferroelectric ceramics exhibit enhanced energy storage and electrocaloric performances due to their excellent dielectric and ferroelectric properties. In this study, the temperature-dependence of the structural and dielectric properties, as well as the field and temperature-dependence of the energy storage and the electrocaloric properties in BCZT ceramics elaborated at low-temperature hydrothermal processing are investigated. X-ray diffraction and Raman spectroscopy results confirmed the ferroelectric-paraelectric phase transition in the BCZT ceramic. At room temperature and 1 kHz, the dielectric constant and dielectric loss reached 5000 and 0.029, respectively. The BCZT ceramic showed a large recovered energy density (W rec) of 414.1 mJ cm-3 at 380 K, with an energy efficiency of 78.6%, and high thermal-stability of W rec of 3.9% in the temperature range of 340-400 K. The electrocaloric effect in BCZT was explored via an indirect approach following the Maxwell relation at 60 kV cm-1. The significant electrocaloric temperature change of 1.479 K at 367 K, a broad temperature span of 87 K, an enhanced refrigerant capacity of 140.33 J kg-1, and a high coefficient of performance of 6.12 obtained at 60 kV cm-1 make BCZT ceramics potentially useful coolant materials in the development of future eco-friendly solid-state refrigeration technology.

7.
Materials (Basel) ; 11(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949883

RESUMO

Quenching and Partitioning (Q&P) steels are promising candidates for automotive applications because of their lightweight potential. Their properties depend on carbon enrichment in austenite which, in turn, is strongly influenced by carbide precipitation in martensite during quenching and partitioning treatment. In this paper, by coupling in situ High Energy X-Ray Diffraction (HEXRD) experiments and Transmission Electron Microscopy (TEM), we give some clarification regarding the precipitation process of iron carbides in martensite throughout the Q&P process. For the first time, precipitation kinetics was followed in real time. It was shown that precipitation starts during the reheating sequence for the steel studied. Surprisingly, the precipitated fraction remains stable all along the partitioning step at 400 °C. Furthermore, the analyses enable the conclusion that the iron carbides are most probably eta carbides. The presence of cementite was ruled out, while the presence of several epsilon carbides cannot be strictly excluded.

8.
Materials (Basel) ; 11(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103508

RESUMO

Atom Probe Tomography (APT), Transmission Electron Microscopy (TEM), and 3D mechanical calculations in complex geometry and anisotropic strain fields were employed to study the role of minor elements in the precipitation process of silicon and chromium nitrides in nitrided Fe⁻Si and Fe⁻Cr alloys, respectively. In nitrided Fe⁻Si alloys, an original sequence of Si3N4 precipitation was highlighted. Al⁻N clusters form first and act as nucleation sites for amorphous Si3N4 nitrides. This novel example of particle-simulated nucleation opens a new way to control Si3N4 precipitation in Fe⁻Si alloys. In nitrided Fe⁻Cr alloys, both the presence of iron in chromium nitrides and excess nitrogen in the ferritic matrix are unquestionably proved. Only a certain part of the so-called excess nitrogen is shown to be explained by the elastic accommodation of the misfit between nitride and the ferritic matrix. The presence of immobile excess nitrogen trapped at interfaces can be highly suspected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA