Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mycopathologia ; 179(3-4): 243-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25515245

RESUMO

Infections caused by dermatophytes, mainly Trichophyton rubrum,are often vulnerable to relapses upon cessation of antifungal therapy, reinforcing the need of new antifungals. Aldimines have potential biological activities, but there are few reports on their antifungal profile. The aim of this study was to evaluate the antifungal activity of 2-(benzylideneamino)phenol (3A3) and 4-(benzylideneamino)phenol (3A4) against dermatophytes. We determined the minimum inhibitory concentration, minimum fungicidal concentration, time-kill curves and fractional inhibitory concentration of the combination of 3A3, 3A4 and itraconazole against a set of isolates of T. rubrum and T. interdigitale. 3A3 was tested in a murine model of dermatophytoses caused by T. rubrum, and the effect on phagocytosis was assessed. The MIC values ranged from 8 to 32 µg/mL for 3A3 and from 64 to 256 µg/mL for 3A4. The interaction between 3A3 and 3A4 with itraconazole proved to be synergistic and indifferent, respectively. 3A3 was as efficient as itraconazole in reducing the fungal burden on the skin of mice, being this effect associated with the influx of neutrophil and macrophage. Also, 3A3 was able to increase the internalization of conidia by macrophages. Altogether, our data encourage future clinical studies with 3A3 to treat dermatophytoses.


Assuntos
Antifúngicos/farmacologia , Fenol/farmacologia , Tinha/microbiologia , Trichophyton/efeitos dos fármacos , Animais , Antifúngicos/síntese química , Antifúngicos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Fenol/química , Tinha/tratamento farmacológico , Trichophyton/genética , Trichophyton/isolamento & purificação , Trichophyton/fisiologia
2.
J Antimicrob Chemother ; 68(2): 354-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23134678

RESUMO

OBJECTIVES: Antimicrobial photodynamic inhibition (aPI) is based on the use of a light source and a photosensitizer to kill pathogens. Little is known about aPI of dermatophytic fungi and its mechanism of action. We aimed to evaluate aPI of Trichophyton rubrum. METHODS: We performed tests using toluidine blue (TBO) as a photosensitizer and a 630 nm light-emitting diode (LED) as a source of light to target 12 T. rubrum isolates. Susceptibility testing with cyclopiroxolamine, time-kill curves and quantification of reactive oxygen species (ROS), peroxynitrite (ONOO·) and nitric oxide (NO·) were performed. RESULTS: The optimal conditions for in vitro aPI were 10 mg/L for TBO and 48 J/cm(2) for LED; these conditions were fungicidal or inhibited >98% of fungal growth depending on the strain tested. LED or TBO treatment alone did not inhibit growth. The MICs of cyclopiroxolamine were 2.0 mg/L for 90% of the strains. Analysis of time-kill curves revealed that pathogen death occurred 24 h post-treatment. Quantification of ROS, ONOO· and NO· revealed improvement after aPI. CONCLUSIONS: Photodynamic inhibition was more efficient in promoting cell death than the antifungal cyclopiroxolamine against T. rubrum. ROS, ONOO· and NO· were important in the fungicidal activity of aPI. A suggested mechanism for this activity is that TBO is excited by LED light (630 nm), reacts with biomolecules and increases the availability of transition electrons and substrates for nitric oxide synthase, thereby increasing the oxidative and nitrosative bursts in the fungal cell.


Assuntos
Antifúngicos/farmacologia , Luz , Viabilidade Microbiana/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Trichophyton/efeitos dos fármacos , Trichophyton/fisiologia , Ciclopirox , Humanos , Testes de Sensibilidade Microbiana , Óxido Nítrico/análise , Piridonas/farmacologia , Espécies Reativas de Oxigênio/análise , Cloreto de Tolônio/farmacologia
3.
Antimicrob Agents Chemother ; 56(5): 2553-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22290956

RESUMO

Cryptococcus gattii is the main pathogen of cryptococcosis in healthy patients and is treated mainly with fluconazole and amphotericin B. The combination of these drugs has been questioned because the mechanisms of action could lead to a theoretical antagonistic interaction. We evaluated distinct parameters involved in the in vitro combination of fluconazole and amphotericin B against Cryptococcus gattii. Fourteen strains of C. gattii were used for the determination of MIC, fractional inhibitory concentration, time-kill curve, and postantifungal effect (PAFE). Ergosterol quantification was performed to evaluate the influence of ergosterol content on the interaction between these antifungals. Interaction between the drugs varied from synergistic to antagonistic depending on the strain and concentration tested. Increasing fluconazole levels were correlated with an antagonistic interaction. A total of 48 h was necessary for reducing the fungal viability in the presence of fluconazole, while 12 h were required for amphotericin B. When these antifungals were tested in combination, fluconazole impaired the amphotericin B activity. The ergosterol content decreased with the increase of fluconazole levels and it was correlated with the lower activity of amphotericin B. The PAFE found varied from 1 to 4 h for fluconazole and from 1 to 3 h for amphotericin B. The interaction of fluconazole and amphotericin B was concentration-dependent and special attention should be directed when these drugs are used in combination against C. gattii.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Fluconazol/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cryptococcus gattii/crescimento & desenvolvimento , Meios de Cultura , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Ergosterol/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Espectrofotometria
4.
J Adv Res ; 14: 81-91, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30009053

RESUMO

The incidence of fungal infections is considered a serious public health problem worldwide. The limited number of antimycotic drugs available to treat human and animal mycosis, the undesirable side effects and toxicities of the currently available drugs, and the emergence of fungal resistance emphasizes the urgent need for more effective antimycotic medicines. In this paper, we describe a rapid, simple, and efficient synthetic route for preparation of the antifungal agent butenafine on a multigram scale. This novel synthetic route also facilitated the preparation of 17 butenafine analogues using Schiff bases as precursors in three steps or less. All the synthesized compounds were evaluated against the yeast, Cryptococcus neoformans/C. gattii species complexes and the filamentous fungi Trichophyton rubrum and Microsporum gypseum. Amine 4bd, a demethylated analogue of butenafine, and its corresponding hydrochloride salt showed low toxicity in vitro and in vivo while maintaining inhibitory activity against filamentous fungi.

5.
PLoS One ; 9(11): e112669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392951

RESUMO

Cryptococcus gattii is an emergent human pathogen. Fluconazole is commonly used for treatment of cryptococcosis, but the emergence of less susceptible strains to this azole is a global problem and also the data regarding fluconazole-resistant cryptococcosis are scarce. We evaluate the influence of fluconazole on murine cryptococcosis and whether this azole alters the polysaccharide (PS) from cryptococcal cells. L27/01 strain of C. gattii was cultivated in high fluconazole concentrations and developed decreased drug susceptibility. This phenotype was named L27/01F, that was less virulent than L27/01 in mice. The physical, structural and electrophoretic properties of the PS capsule of L27/01F were altered by fluconazole. L27/01F presented lower antiphagocytic properties and reduced survival inside macrophages. The L27/01F did not affect the central nervous system, while the effect in brain caused by L27/01 strain began after only 12 hours. Mice infected with L27/01F presented lower production of the pro-inflammatory cytokines, with increased cellular recruitment in the lungs and severe pulmonary disease. The behavioral alterations were affected by L27/01, but no effects were detected after infection with L27/01F. Our results suggest that stress to fluconazole alters the capsule of C. gattii and influences the clinical manifestations of cryptococcosis.


Assuntos
Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus gattii/efeitos dos fármacos , Fluconazol/farmacologia , Cápsulas Fúngicas/efeitos dos fármacos , Polissacarídeos Fúngicos/química , Animais , Criptococose/microbiologia , Criptococose/mortalidade , Criptococose/patologia , Cryptococcus gattii/química , Cryptococcus gattii/patogenicidade , Farmacorresistência Fúngica/efeitos dos fármacos , Cápsulas Fúngicas/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Fenótipo , Índice de Gravidade de Doença , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA