Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood ; 136(13): 1520-1534, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396934

RESUMO

High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.


Assuntos
Caseína Quinase II/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína bcl-X/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
2.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467550

RESUMO

IKAROS, encoded by the IKZF1 gene, is a DNA-binding protein that functions as a tumor suppressor in T cell acute lymphoblastic leukemia (T-ALL). Recent studies have identified IKAROS's novel function in the epigenetic regulation of gene expression in T-ALL and uncovered many genes that are likely to be directly regulated by IKAROS. Here, we report the transcriptional regulation of two genes, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) and phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE), by IKAROS in T-ALL. PIK3CD encodes the protein p110δ subunit of phosphoinositide 3-kinase (PI3K). The PI3K/AKT pathway is frequently dysregulated in cancers, including T-ALL. IKAROS binds to the promoter regions of PIK3CD and PIKFYVE and reduces their transcription in primary T-ALL. Functional analysis demonstrates that IKAROS functions as a transcriptional repressor of both PIK3CD and PIKFYVE. Protein kinase CK2 (CK2) is a pro-oncogenic kinase that is overexpressed in T-ALL. CK2 phosphorylates IKAROS, impairs IKAROS's DNA-binding ability, and functions as a repressor of PIK3CD and PIKFYVE. CK2 inhibition results in increased IKAROS binding to the promoters of PIK3CD and PIKFYVE and the transcriptional repression of both these genes. Overall, the presented data demonstrate for the first time that in T-ALL, CK2 hyperactivity contributes to PI3K signaling pathway upregulation, at least in part, through impaired IKAROS transcriptional regulation of PIK3CD and PIKFYVE. Targeting CK2 restores IKAROS's regulatory effects on the PI3K oncogenic signaling pathway.


Assuntos
Caseína Quinase II/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Fosfatidilinositol 3-Quinases/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células HEK293 , Humanos , Fator de Transcrição Ikaros/metabolismo , Naftiridinas/farmacologia , Fenazinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transdução de Sinais/genética
3.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138279

RESUMO

Ikaros is a DNA-binding protein that regulates gene expression and functions as a tumor suppressor in B-cell acute lymphoblastic leukemia (B-ALL). The full cohort of Ikaros target genes have yet to be identified. Here, we demonstrate that Ikaros directly regulates expression of the small GTPase, Rab20. Using ChIP-seq and qChIP we assessed Ikaros binding and the epigenetic signature at the RAB20 promoter. Expression of Ikaros, CK2, and RAB20 was determined by qRT-PCR. Overexpression of Ikaros was achieved by retroviral transduction, whereas shRNA was used to knockdown Ikaros and CK2. Regulation of transcription from the RAB20 promoter was analyzed by luciferase reporter assay. The results showed that Ikaros binds the RAB20 promoter in B-ALL. Gain-of-function and loss-of-function experiments demonstrated that Ikaros represses RAB20 transcription via chromatin remodeling. Phosphorylation by CK2 kinase reduces Ikaros' affinity toward the RAB20 promoter and abolishes its ability to repress RAB20 transcription. Dephosphorylation by PP1 phosphatase enhances both Ikaros' DNA-binding affinity toward the RAB20 promoter and RAB20 repression. In conclusion, the results demonstrated opposing effects of CK2 and PP1 on expression of Rab20 via control of Ikaros' activity as a transcriptional regulator. A novel regulatory signaling network in B-cell leukemia that involves CK2, PP1, Ikaros, and Rab20 is identified.


Assuntos
Fator de Transcrição Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Doença Aguda , Linhagem Celular Tumoral , Humanos , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/genética
4.
J Biol Chem ; 291(8): 4004-18, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26655717

RESUMO

Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.


Assuntos
Caseína Quinase II/metabolismo , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Histona Desacetilase 1/metabolismo , Fator de Transcrição Ikaros/metabolismo , Histona Desmetilases com o Domínio Jumonji/biossíntese , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Repressoras/biossíntese , Transcrição Gênica , Caseína Quinase II/genética , Histona Desacetilase 1/genética , Humanos , Fator de Transcrição Ikaros/genética , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Proteínas Repressoras/genética , Células U937
5.
Blood ; 126(15): 1813-22, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26219304

RESUMO

Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Genes Supressores de Tumor , Fator de Transcrição Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Animais , Apoptose/efeitos dos fármacos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Endogâmicos NOD , Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Adv Exp Med Biol ; 779: 327-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23288647

RESUMO

Acute leukemia represents 31% of all cancers diagnosed in children and 80% of it is of Lymphoblastic type. Multiple genetic lesions in the hematopoietic progenitor cells prior to or during differentiation to B and T cell lead to development of leukemia. There are several subtypes of Acute Leukemia based on chromosome number changes, the presence of certain translocations and gene mutations, each of which has different clinical, biological and prognostic features. High throughput genomic technologies like array-based comparative genomic hybridization (array-CGH) and single nucleotide polymorphism microarrays (SNP arrays), have given us insight through a very detailed look at the genetic changes of leukemia, specifically, ALL. Here, we discuss various genetic mutations identified in Acute Lymphoblastic Leukemia. We also explore various genetic targets and currently available as well as upcoming targeted therapies for ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Humanos , Mutação
7.
Adv Biol Regul ; 88: 100942, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621151

RESUMO

Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.


Assuntos
Leucemia , Transdução de Sinais , Humanos , Transdução de Sinais/genética , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Genes Supressores de Tumor , Leucemia/genética , Fosforilação , Regulação da Expressão Gênica
8.
Children (Basel) ; 9(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35204936

RESUMO

BACKGROUND: Enlarged lymph nodes are a common complaint in a Pediatrician's office. Diagnosis of reactive lymphadenopathy secondary to infectious, inflammatory, immune dysregulation calls for clinical investigation, including a thorough history, physical exam, imaging, and less often, a biopsy of the lymph node. Here we discuss a rare presentation of extensive generalized, chronic, waxing, and waning lymphadenopathy diagnosed as Progressive Transformation of Germinal Centers (PTGC) and the course of illness over eight years follow up period. DISCUSSION: Progressive Transformation of Germinal Centers (PTGC) is considered a benign condition, but extensive recurrent generalized lymphadenopathy in a very young child has not been reported before. This case demonstrates the importance of long-term follow-up and tailoring the diagnostic work-up and management based on new signs and symptoms. Here we focus on the clinical considerations and management of complex presentation of a common clinical finding.

9.
Adv Med Educ Pract ; 13: 1039-1050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120395

RESUMO

Purpose: Clinician-scientists have a high attrition rate at the junior-faculty level, before they gain independent funding. We identified the lack of skill set, clinician-scientist community and collaboration between clinician-scientists and clinicians with predominantly clinical duties, as key problems in our medium-size college of medicine. Methods: We designed a novel two-year educational program, the Clinician-scientist Faculty Mentoring program (FAME) specifically to target junior clinician-scientists. The program enrollment included both lab-based, "traditional" and "non-traditional" clinician-scientists, with predominantly clinical duties and limited time for research. The curriculum included the novel educational tools: Emerging technology seminars and mentored work-in-progress research seminars, integrated with mock grant review. Results: The first class enrolled 17 clinician-scientists with diverse clinical subspecialty, previous research training, and protected research time. After two years in the program, the self-assessment of FAME scholars demonstrated strong improvement in grantsmanship skills, career development, emerging technologies, and the sense of community and collaboration. Compared to the period before initiating FAME, scholars increased annual scholarly output by 65% and new extramural funding by >20-fold ($0.189 vs $4.0 million) following completion of FAME. The "traditional" clinician-scientists, who had >50% research time, increased new extramural funding by ~25-fold ($0.134 vs $3.336 million), whereas "non-traditional" clinician-scientists who had ≤50% research time increased new extramural funding by >13-fold. Conclusion: Results suggest that a training program tailored specifically to clinician-scientists leads to increased scholarly productivity and grant funding regardless of research background. Implementing this type of training program nationally, with inclusion of clinician-scientists with various amounts of protected time for research, will help both "traditional" and "non-traditional" clinician-scientists to obtain a substantial independent extramural funding, fulfill their scholarly potential, and enhance their sense of community. Our model would be particularly useful for small-to-medium sized academic institutions, who have a limited clinician-scientist workforce facing competing health care system needs.

10.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807974

RESUMO

Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS' transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like-2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.

11.
Leukemia ; 35(5): 1267-1278, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33531656

RESUMO

Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Caseína Quinase II/genética , Linhagem Celular , Linhagem Celular Tumoral , Criança , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Células HEK293 , Humanos , Naftiridinas/farmacologia , Fenazinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais/efeitos dos fármacos
12.
Adv Biol Regul ; 75: 100665, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31623972

RESUMO

Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq-coupled with functional experiments-revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.


Assuntos
Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Neoplasias Hematológicas , Leucemia , Proteínas de Neoplasias , Transdução de Sinais , Proliferação de Células , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
13.
Leukemia ; 33(11): 2720-2731, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31073152

RESUMO

Ikaros encodes a transcription factor that functions as a tumor suppressor in T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms through which Ikaros regulates gene expression and cellular proliferation in T-ALL are unknown. Re-introduction of Ikaros into Ikaros-null T-ALL cells resulted in cessation of cellular proliferation and induction of T-cell differentiation. We performed dynamic, global, epigenomic, and gene expression analyses to determine the mechanisms of Ikaros tumor suppressor activity. Our results identified novel Ikaros functions in the epigenetic regulation of gene expression: Ikaros directly regulates de novo formation and depletion of enhancers, de novo formation of active enhancers and activation of poised enhancers; Ikaros directly induces the formation of super-enhancers; and Ikaros demonstrates pioneering activity by directly regulating chromatin accessibility. Dynamic analyses demonstrate the long-lasting effects of Ikaros DNA binding on enhancer activation, de novo formation of enhancers and super-enhancers, and chromatin accessibility. Our results establish that Ikaros' tumor suppressor function occurs via global regulation of the enhancer and super-enhancer landscape and through pioneering activity. Expression analysis identified a large number of novel signaling pathways that are directly regulated by Ikaros and Ikaros-induced enhancers, and that are responsible for the cessation of proliferation and induction of T-cell differentiation in T-ALL cells.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Genes Supressores de Tumor , Fator de Transcrição Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Linfócitos T/citologia
14.
Adv Biol Regul ; 65: 16-25, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28623166

RESUMO

Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.


Assuntos
Caseína Quinase II/genética , Regulação Leucêmica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Fator de Transcrição Ikaros/genética , Leucemia/genética , Antineoplásicos/uso terapêutico , Caseína Quinase II/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Leucemia/diagnóstico , Leucemia/tratamento farmacológico , Leucemia/mortalidade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Prognóstico , Transdução de Sinais , Análise de Sobrevida
15.
Adv Biol Regul ; 63: 71-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27666503

RESUMO

The IKZF1 gene encodes the Ikaros protein, a zinc finger transcriptional factor that acts as a master regulator of hematopoiesis and a tumor suppressor in leukemia. Impaired activity of Ikaros is associated with the development of high-risk acute lymphoblastic leukemia (ALL) with a poor prognosis. The molecular mechanisms that regulate Ikaros' function as a tumor suppressor and regulator of cellular proliferation are not well understood. We demonstrated that Ikaros is a substrate for Casein Kinase II (CK2), an oncogenic kinase that is overexpressed in ALL. Phosphorylation of Ikaros by CK2 impairs Ikaros' DNA-binding ability, as well as Ikaros' ability to regulate gene expression and function as a tumor suppressor in leukemia. Targeting CK2 with specific inhibitors restores Ikaros' function as a transcriptional regulator and tumor suppressor resulting in a therapeutic, anti-leukemia effect in a preclinical model of ALL. Here, we review the genes and pathways that are regulated by Ikaros and the molecular mechanisms through which Ikaros and CK2 regulate cellular proliferation in leukemia.


Assuntos
Caseína Quinase II/genética , Cromatina/imunologia , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Linfócitos T/imunologia , Animais , Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/imunologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Cromatina/química , Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/imunologia , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/imunologia , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/imunologia , Naftiridinas/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fenazinas , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
16.
Curr Pharm Des ; 23(1): 95-107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27719640

RESUMO

BACKGROUND: Casein kinase II (CK2) is a pro-oncogenic protein, which is emerging as a promising therapeutic target in cancer. Recent studies have revealed an important role for CK2 in tumorigenesis. High levels of CK2 are noted in many malignancies including leukemia. Use of CK2 inhibitors in various malignancies including breast, prostate, and lung cancer are being tested. Although many CK2 inhibitors exist, only a few have emerged as selective inhibitors that are potent and effective. CX-4945 is a selective, orallybioavailable small molecule inhibitor, which has shown encouraging results in pre-clinical models of leukemia. METHODS: In this review we will elaborate on the structure and physiological function of the CK2 protein as well as its role in cancer. We will review, in depth, the role of CK2 in leukemia and its mechanisms of tumorigenesis via phosphorylation of the tumor suppressor protein Ikaros. We will discuss both the importance of Ikaros in leukemia suppression and the restoration of Ikaros' tumor suppressor function after CK2 inhibition by CX-4945 (a CK2-specific inhibitor). RESULTS: CK2 is an oncogene that is overexpressed in hematological malignancies. In high risk Pre-B ALL, CK2 phosphorylates Ikaros tumor suppressor and promotes leukemogenesis. Inhibition of CK2 using CX4945 restores Ikaros function and leads to anti leukemic effects in vitro and in pre-clinical leukemia models. CONCLUSION: CK2 is an attractive target in treatment of various cancers. Currently only a few specific CK2 inhibitors are available. Preclinical studies using CK2 inhibitor, CX4945 in high risk pediatric leukemias have shown promising results and warrants further testing in other types of leukemia.


Assuntos
Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Neoplasias Hematológicas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Inibidores de Proteínas Quinases/química
17.
J Investig Med ; 64(3): 735-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26912004

RESUMO

Protein signaling and regulation of gene expression are the two major mechanisms that regulate cellular proliferation in leukemia. Discerning the function of these processes is essential for understanding the pathogenesis of leukemia and for developing the targeted therapies. Here, we provide an overview of one of the mechanisms that regulates gene transcription in leukemia. This mechanism involves the direct interaction between Casein Kinase II (CK2) and the Ikaros transcription factor. Ikaros (IKZF1) functions as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Impaired Ikaros function results in the development of high-risk leukemia. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. In vivo, Ikaros is a target for CK2, a pro-oncogenic kinase. CK2 directly phosphorylates Ikaros at multiple amino acids. Functional experiments showed that CK2-mediated phosphorylation of Ikaros, regulates Ikaros' DNA binding affinity, subcellular localization and protein stability. Recent studies revealed that phosphorylation of Ikaros by CK2 regulates Ikaros binding and repression of the terminal deoxytransferase (TdT) gene in normal thymocytes and in T-cell ALL. Available data suggest that the oncogenic activity of CK2 in leukemia involves functional inactivation of Ikaros and provide a rationale for CK2 inhibitors as a potential treatment for ALL.


Assuntos
Caseína Quinase II/metabolismo , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/metabolismo , Leucemia/genética , Transdução de Sinais/genética , Transcrição Gênica , Humanos , Fator de Transcrição Ikaros/química , Leucemia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA