Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237846

RESUMO

Rhesus TRIM5α (rhTRIM5α) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5α to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the precise site at which the B30.2 domain binds remain largely unknown. The human orthologue of TRIM5α (hsTRIM5α) fails to block infection by HIV-1 both in vivo and in vitro This is thought to be due to differences in binding to the capsid lattice. To map the species-specific binding surface on the HIV-1 capsid lattice, we used microscale thermophoresis and dual-focus fluorescence correlation spectroscopy to measure binding affinity of rhesus and human TRIM5α B30.2 domains to a series of HIV-1 capsid variants that mimic distinct capsid arrangements at each of the symmetry axes of the HIV-1 capsid lattice. These surrogates include previously characterized capsid oligomers, as well as a novel chemically cross-linked capsid trimer that contains cysteine substitutions near the 3-fold axis of symmetry. The results demonstrate that TRIM5α binding involves multiple capsid molecules along the 2-fold and 3-fold interfaces between hexamers and indicate that the binding interface at the 3-fold axis contributes to the well-established differences in restriction potency between TRIM5α orthologues.IMPORTANCE TRIM5α is a cellular protein that fends off infection by retroviruses through binding to the viruses' protein shell surrounding its genetic material. This shell is composed of several hundred capsid proteins arranged in a honeycomb-like hexagonal pattern that is conserved across retroviruses. By binding to the complex lattice formed by multiple capsid proteins, rather than to a single capsid monomer, TRIM5α restriction activity persists despite the high mutation rate in retroviruses such as HIV-1. In rhesus monkeys, but not in humans, TRIM5α confers resistance to HIV-1. By measuring the binding of human and rhesus TRIM5α to a series of engineered HIV-1 capsid mimics of distinct capsid lattice interfaces, we reveal the HIV-1 capsid surface critical for species-specific binding by TRIM5α.


Assuntos
Proteínas do Capsídeo/química , Proteínas de Transporte/química , HIV-1/química , Proteínas/química , Animais , Fatores de Restrição Antivirais , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Ciclofilina A/química , Ciclofilina A/genética , HIV-1/genética , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes , Células Sf9 , Especificidade da Espécie , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
2.
Nature ; 503(7476): 418-21, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24132235

RESUMO

Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.


Assuntos
Biocatálise , Evolução Molecular Direcionada , Enzimas/química , Enzimas/metabolismo , Engenharia de Proteínas , Carbono/química , Domínio Catalítico , Cristalografia por Raios X , Enzimas/genética , Cinética , Modelos Moleculares , Prótons , Triazóis/química , Triazóis/metabolismo , Triose-Fosfato Isomerase/metabolismo
3.
J Cell Sci ; 128(19): 3607-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26275827

RESUMO

Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions.


Assuntos
Núcleo Celular/metabolismo , Laminas/metabolismo , Membrana Nuclear/metabolismo , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo
4.
Nature ; 472(7343): 361-5, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21512573

RESUMO

TRIM5 is a RING domain-E3 ubiquitin ligase that restricts infection by human immunodeficiency virus (HIV)-1 and other retroviruses immediately following virus invasion of the target cell cytoplasm. Antiviral potency correlates with TRIM5 avidity for the retrovirion capsid lattice and several reports indicate that TRIM5 has a role in signal transduction, but the precise mechanism of restriction is unknown. Here we demonstrate that TRIM5 promotes innate immune signalling and that this activity is amplified by retroviral infection and interaction with the capsid lattice. Acting with the heterodimeric, ubiquitin-conjugating enzyme UBC13-UEV1A (also known as UBE2N-UBE2V1), TRIM5 catalyses the synthesis of unattached K63-linked ubiquitin chains that activate the TAK1 (also known as MAP3K7) kinase complex and stimulate AP-1 and NFκB signalling. Interaction with the HIV-1 capsid lattice greatly enhances the UBC13-UEV1A-dependent E3 activity of TRIM5 and challenge with retroviruses induces the transcription of AP-1 and NF-κB-dependent factors with a magnitude that tracks with TRIM5 avidity for the invading capsid. Finally, TAK1 and UBC13-UEV1A contribute to capsid-specific restriction by TRIM5. Thus, the retroviral restriction factor TRIM5 has two additional activities that are linked to restriction: it constitutively promotes innate immune signalling and it acts as a pattern recognition receptor specific for the retrovirus capsid lattice.


Assuntos
Capsídeo/química , Capsídeo/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Imunidade Inata/imunologia , Retroviridae/imunologia , Fatores de Restrição Antivirais , Proteínas de Transporte/genética , Linhagem Celular , Ativação Enzimática , Células HEK293 , HIV-1/química , HIV-1/imunologia , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Retroviridae/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(30): 11025-30, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25030449

RESUMO

ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(ß,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Lactococcus lactis/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
Proc Natl Acad Sci U S A ; 110(10): E869-77, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431166

RESUMO

Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.


Assuntos
Adenovírus Humanos/genética , Engenharia de Proteínas/métodos , Adenovírus Humanos/metabolismo , Repetição de Anquirina/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Escherichia coli/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Biochemistry ; 54(19): 3086-99, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25947941

RESUMO

ABC exporters are ubiquitous multidomain transport proteins that couple ATP hydrolysis at a pair of nucleotide binding domains to substrate transport across the lipid bilayer mediated by two transmembrane domains. Recently, the crystal structure of the heterodimeric ABC exporter TM287/288 was determined. One of its asymmetric ATP binding sites is called the degenerate site; it binds nucleotides tightly but is impaired in terms of ATP hydrolysis. Here we report the crystal structures of both isolated motor domains of TM287/288. Unexpectedly, structural elements constituting the degenerate ATP binding site are disordered in these crystals and become structured only in the context of the full-length transporter. In addition, hydrogen bonding patterns of key residues, including those of the catalytically important Walker B and the switch loop motifs, are fundamentally different in the solitary NBDs compared to those in the intact transport protein. The structures reveal crucial interdomain contacts that need to be established for the proper assembly of the functional transporter complex.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Biochem J ; 461(2): 279-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24779913

RESUMO

Caspases play important roles during apoptosis, inflammation and proliferation. The high homology among family members makes selective targeting of individual caspases difficult, which is necessary to precisely define the role of these enzymes. We have selected caspase-7-specific binders from a library of DARPins (designed ankyrin repeat proteins). The DARPins D7.18 and D7.43 bind specifically to procaspase 7 and active caspase 7, but not to other members of the family. Binding of the DARPins does not affect the active enzyme, but interferes with its activation by other caspases. The crystal structure of the caspase 7-D7.18 complex elucidates the high selectivity and the mode of inhibition. Combining these caspase-7-specific DARPins with the previously reported caspase-3-inhibitory DARPin D3.4S76R reduces the activity of caspase 3 and 7 in double-transfected HeLa cells during apoptosis. In addition, these cells showed less susceptibility to TRAIL (tumour-necrosis-factor-related apoptosis-inducing ligand)-induced apoptosis in living cell experiments. D7.18 and D7.43 are therefore novel tools for in vitro studies on procaspase 7 activation as well as for clarifying the role of its activation in different cellular processes. If applied in combination with D3.4S76R, they represent an excellent instrument to increase our understanding of these enzymes during various cellular processes.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Inibidores de Caspase/farmacologia , Proteínas Nucleares/farmacologia , Repetição de Anquirina , Apoptose/efeitos dos fármacos , Caspase 3/química , Caspase 7/química , Inibidores de Caspase/química , Células HeLa , Humanos , Modelos Moleculares , Imagem Molecular , Proteínas Nucleares/química , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
9.
Proc Natl Acad Sci U S A ; 109(15): 5687-92, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451937

RESUMO

AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion. Binding of drugs has been shown at a periplasmic deep binding pocket in the T conformation. The initial drug-binding step and transport toward this drug-binding site has been elusive thus far. Here we report high resolution structures (1.9-2.25 Å) of AcrB/designed ankyrin repeat protein (DARPin) complexes with bound minocycline or doxorubicin. In the AcrB/doxorubicin cocrystal structure, binding of three doxorubicin molecules is apparent, with one doxorubicin molecule bound in the deep binding pocket of the T monomer and two doxorubicin molecules in a stacked sandwich arrangement in an access pocket at the lateral periplasmic cleft of the L monomer. This access pocket is separated from the deep binding pocket apparent in the T monomer by a switch-loop. The localization and conformational flexibility of this loop seems to be important for large substrates, because a G616N AcrB variant deficient in macrolide transport exhibits an altered conformation within this loop region. Transport seems to be a stepwise process of initial drug uptake in the access pocket of the L monomer and subsequent accommodation of the drug in the deep binding pocket during the L to T transition to the internal deep binding pocket of the T monomer.


Assuntos
Doxorrubicina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Minociclina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Preparações Farmacêuticas/metabolismo , Sítios de Ligação , Biocatálise , Transporte Biológico , Doxorrubicina/química , Minociclina/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
10.
Biochemistry ; 53(19): 3106-17, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24815518

RESUMO

The cytosolic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) are key sensors for bacterial and viral invaders and endogenous stress signals. NLRs contain a varying N-terminal effector domain that regulates the downstream signaling events upon its activation and determines the subclass to which a NLR member belongs. NLRC5 contains an unclassified N-terminal effector domain that has been reported to interact downstream with the tandem caspase recruitment domain (CARD) of retinoic acid-inducible gene I (RIG-I). Here we report the solution structure of the N-terminal effector domain of NLRC5 and in vitro interaction experiments with the tandem CARD of RIG-I. The N-terminal effector domain of NLRC5 adopts a six α-helix bundle with a general death fold, though it displays specific structural features that are strikingly different from the CARD. Notably, α-helix 3 is replaced by an ordered loop, and α-helix 1 is devoid of the characteristic interruption. Detailed structural alignments between the N-terminal effector domains of NLRC5 with a representative of each death-fold subfamily showed that NLRC5 fits best to the CARD subfamily and can be called an atypical CARD. Due to the specific structural features, the atypical CARD also displays a different electrostatic surface. Because the shape and charge of the surface is crucial for the establishment of a homotypic CARD-CARD interaction, these specific structural features seem to have a significant effect on the interaction between the atypical CARD of NLRC5 and the tandem RIG-I CARD.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Dobramento de Proteína , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Imunológicos
11.
J Biol Chem ; 288(20): 14238-14246, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23546876

RESUMO

FixK2 is a regulatory protein that activates a large number of genes for the anoxic and microoxic, endosymbiotic, and nitrogen-fixing life styles of the α-proteobacterium Bradyrhizobium japonicum. FixK2 belongs to the cAMP receptor protein (CRP) superfamily. Although most CRP family members are coregulated by effector molecules, the activity of FixK2 is negatively controlled by oxidation of its single cysteine (Cys-183) located next to the DNA-binding domain and possibly also by proteolysis. Here, we report the three-dimensional x-ray structure of FixK2, a representative of the FixK subgroup of the CRP superfamily. Crystallization succeeded only when (i) an oxidation- and protease-insensitive protein variant (FixK2(C183S)-His6) was used in which Cys-183 was replaced with serine and the C terminus was fused with a hexahistidine tag and (ii) this protein was allowed to form a complex with a 30-mer double-stranded target DNA. The structure of the FixK2-DNA complex was solved at a resolution of 1.77 Å, at which the protein formed a homodimer. The precise protein-DNA contacts were identified, which led to an affirmation of the canonical target sequence, the so-called FixK2 box. The C terminus is surface-exposed, which might explain its sensitivity to specific cleavage and degradation. The oxidation-sensitive Cys-183 is also surface-exposed and in close proximity to DNA. Therefore, we propose a mechanism whereby the oxo acids generated after oxidation of the cysteine thiol cause an electrostatic repulsion, thus preventing specific DNA binding.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/química , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Oxigênio/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/química , Fixação de Nitrogênio , Plasmídeos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio
12.
Biol Chem ; 395(10): 1243-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25153593

RESUMO

Abstract Caspases play important roles in cell death, differentiation, and proliferation. Due to their high homology, especially of the active site, specific targeting of a particular caspase using substrate analogues is very difficult. Although commercially available small molecules based on peptides are lacking high specificity due to overlapping cleavage motives between different caspases, they are often used as specific tools. We have selected designed ankyrin repeat proteins (DARPins) against human caspases 1-9 and identified high-affinity binders for the targeted caspases, except for caspase 4. Besides previously reported caspase-specific DARPins, we generated novel DARPins (D1.73, D5.15, D6.11, D8.1, D8.4, and D9.2) and confirmed specificity for caspases 1, 5, 6, and 8 using a subset of caspase family members. In addition, we solved the crystal structure of caspase 8 in complex with DARPin D8.4. This binder interacts with non-conserved residues on the large subunit, thereby explaining its specificity. Structural analysis of this and other previously published crystal structures of caspase/DARPin complexes depicts two general binding areas either involving active site forming loops or a surface area laterally at the large subunit of the enzyme. Both surface areas involve non-conserved surface residues of caspases.


Assuntos
Repetição de Anquirina , Caspases/efeitos dos fármacos , Proteínas/genética , Proteínas/farmacologia , Caspase 8/química , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Ribossomos , Ressonância de Plasmônio de Superfície
13.
Nat Chem Biol ; 8(8): 707-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22772153

RESUMO

Type 1 pili from uropathogenic Escherichia coli are filamentous, noncovalent protein complexes mediating bacterial adhesion to the host tissue. All structural pilus subunits are homologous proteins sharing an invariant disulfide bridge. Here we show that disulfide bond formation in the unfolded subunits, catalyzed by the periplasmic oxidoreductase DsbA, is required for subunit recognition by the assembly chaperone FimC and for FimC-catalyzed subunit folding. FimC thus guarantees quantitative disulfide bond formation in each of the up to 3,000 subunits of the pilus. The X-ray structure of the complex between FimC and the main pilus subunit FimA and the kinetics of FimC-catalyzed FimA folding indicate that FimC accelerates folding of pilus subunits by lowering their topological complexity. The kinetic data, together with the measured in vivo concentrations of DsbA and FimC, predict an in vivo half-life of 2 s for oxidative folding of FimA in the periplasm.


Assuntos
Dissulfetos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Escherichia coli Uropatogênica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas , Escherichia coli Uropatogênica/genética
14.
Chimia (Aarau) ; 68(1): 54-59, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28982439

RESUMO

The first protein crystallography group in Switzerland was installed at the Biozentrum of the University of Basel approximately 40 years ago. Since then protein crystallography has grown and matured remarkably and is now established in the molecular biology, biochemistry or biological medicine departments of most major Swiss Universities as well as in the pharmaceutical industry and in biotech startup companies. Swiss X-ray biocrystallography groups have made remarkable contributions from the beginning and have brought Switzerland to the forefront in biostructural research during the last 5 to 10 years. Switzerland has now a leading position in the areas of supramolecular complexes, membrane proteins and structure-based drug design in pharmaceutical and biotech industries. Protein crystallography on the outer membrane protein ompF as well as the development of the lipidic cubic phase crystallization methodology has been pioneered at the Biozentrum. The latter found its somewhat late recognition through the recent explosion in structure determinations of the seven transmembrane helix G-coupled receptors. Highlights from Swiss structural biology groups in the field of supramolecular complexes include the structures of ribosomal particles, of the nucleosome and the pilus assembly complex of uropathogenic E. coli. On the membrane protein side advances in the field of ABC transporters and ion channels are world-recognized achievements of Swiss structural biology. Dedicated laboratories at many academic and industrial institutions, their current research programs, the availability of excellent infrastructure and the continuing efforts to build new facilities such as the SwissFEL indicate an even brighter future for structural biology in Switzerland.

15.
Chimia (Aarau) ; 68(1-2): 54-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801698

RESUMO

The first protein crystallography group in Switzerland was installed at the Biozentrum of the University of Basel approximately 40 years ago. Since then protein crystallography has grown and matured remarkably and is now established in the molecular biology, biochemistry or biological medicine departments of most major Swiss Universities as well as in the pharmaceutical industry and in biotech startup companies. Swiss X-ray biocrystallography groups have made remarkable contributions from the beginning and have brought Switzerland to the forefront in biostructural research during the last 5 to 10 years. Switzerland has now a leading position in the areas of supramolecular complexes, membrane proteins and structure-based drug design in pharmaceutical and biotech industries. Protein crystallography on the outer membrane protein ompF as well as the development of the lipidic cubic phase crystallization methodology has been pioneered at the Biozentrum. The latter found its somewhat late recognition through the recent explosion in structure determinations of the seven transmembrane helix G-coupled receptors. Highlights from Swiss structural biology groups in the field of supramolecular complexes include the structures of ribosomal particles, of the nucleosome and the pilus assembly complex of uropathogenic E. coli. On the membrane protein side advances in the field of ABC transporters and ion channels are world-recognized achievements of Swiss structural biology. Dedicated laboratories at many academic and industrial institutions, their current research programs, the availability of excellent infrastructure and the continuing efforts to build new facilities such as the SwissFEL indicate an even brighter future for structural biology in Switzerland.


Assuntos
Bioquímica/métodos , Cristalografia/métodos , Proteínas/química , Bioquímica/história , Cristalografia/história , História do Século XX , História do Século XXI , Modelos Moleculares , Biologia Molecular/história , Biologia Molecular/métodos , Conformação Proteica , Suíça
16.
Biochemistry ; 52(51): 9237-45, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24325597

RESUMO

Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Sítios de Ligação , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/enzimologia , Citoplasma/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/isolamento & purificação , Células HEK293 , Humanos , Potenciais da Membrana , Nucleotídeos Cíclicos/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Oócitos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Xenopus laevis
17.
J Biol Chem ; 287(24): 20395-406, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22523072

RESUMO

ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Escherichia coli/química , Multimerização Proteica , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Lipídeo A/química , Lipídeo A/genética , Lipídeo A/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
18.
Biochem Biophys Res Commun ; 431(1): 70-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277102

RESUMO

The human ether-a-go-go related gene (hERG) potassium channel plays a major role in the repolarization of the cardiac action potential. Inhibition of the hERG function by mutations or a wide variety of pharmaceutical compounds cause long QT syndrome and lead to potentially lethal arrhythmias. For detailed insights into the structural and biochemical background of hERG function and drug binding, the purification of recombinant protein is essential. Because the hERG channel is a challenging protein to purify, fast and easy techniques to evaluate different expression, solubilization and purification conditions are of primary importance. Here, we describe the generation of a set of 12 monoclonal antibodies against hERG. Beside their suitability in western blot, immunoprecipitation and immunostaining, these antibodies were used to establish a sandwich ELISA for the detection and relative quantification of hERG in different expression systems. Furthermore, a Fab fragment was used in fluorescence size exclusion chromatography to determine the oligomeric state of hERG after solubilization. These new tools can be used for a fast and efficient screening of expression, solubilization and purification conditions.


Assuntos
Anticorpos Monoclonais/biossíntese , Ensaio de Imunoadsorção Enzimática , Canais de Potássio Éter-A-Go-Go/análise , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Cromatografia em Gel/métodos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/imunologia , Canais de Potássio Éter-A-Go-Go/isolamento & purificação , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas , Camundongos
19.
Chembiochem ; 13(14): 2137-45, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22961926

RESUMO

ß-Aminopeptidases have exclusive biocatalytic potential because they react with peptides composed of ß-amino acids, which serve as building blocks for the design of non-natural peptidomimetics. We have identified the ß-lactam antibiotic ampicillin and the ampicillin-derived penicilloic acid as novel inhibitors of the ß-aminopeptidase BapA from Sphingosinicella xenopeptidilytica (K(i) values of 0.69 and 0.74 mM, respectively). We report high-resolution crystal structures of BapA in noncovalent complexes with these inhibitors and with the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride. All three inhibitors showed similar binding characteristics; the aromatic moiety extended into a hydrophobic binding pocket of the active site, and the free amino group formed a salt bridge with Glu133 of BapA. The exact position of the inhibitors and structural details of the ligand binding pocket illustrate the specificity and the enantioselectivity of BapA-catalyzed reactions with ß-peptide substrates.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Inibidores de Serina Proteinase/química , beta-Lactamas/química , Aminopeptidases/química , Antibacterianos/química , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Estrutura Terciária de Proteína , Sphingomonadaceae/enzimologia , Estereoisomerismo , Especificidade por Substrato , Sulfonas/química
20.
Protein Expr Purif ; 84(2): 236-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22683476

RESUMO

A number of strategies and protocols for the expression, purification and kinetic characterization of human caspases are described in the literature. We have systematically revised these protocols and present comprehensive optimized expression and purification protocols for caspase-1 to -9 as well as improved assay conditions for their reproducible kinetic characterization. Our studies on active site titration revealed that the reproducibility is strongly affected by the presence of DTT in the assay buffer. Furthermore, we observed that not all caspases show a linear relationship between enzymatic activity and protein concentration, which explains the discrepancy between published values of specific activities from different laboratories. Our broad kinetic analysis allows the conclusion that the dependency of caspase activities on protein concentration is an effect of concentration-dependent dimerization, which can also be influenced by kosmotropic salts. The protocol recommendations as an outcome of this work will yield higher reproducibility regarding expression and purification of human caspases and contribute to standardization of enzyme kinetic data.


Assuntos
Caspases/genética , Caspases/metabolismo , Clonagem Molecular/métodos , Caspases/química , Caspases/isolamento & purificação , Domínio Catalítico , Cromatografia em Gel/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/genética , Expressão Gênica , Humanos , Cinética , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA