RESUMO
Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8 + T cells. This signature was dependent on radiation-induced increases of Type I interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.
RESUMO
PURPOSE: Many solid tumors present with perineural invasion (PNI), and innervation correlates with worsened prognosis. The effects that commonly administered therapies such as radiation therapy (RT) have on PNI status remain unknown. We investigated the contribution of RT on the nervous system and elucidated the implications that increased nerve signaling can have on tumor burden using our previously developed orthotopic murine model of rectal cancer (RC) and our targeted and clinically relevant short-course RT (SCRT) regimen. METHODS: Medical charts for patients with RC treated at the Wilmot Cancer Institute were obtained and PNI status was analyzed. Human data were accompanied by an orthotopic murine model of RC. Briefly, luciferase-expressing murine colon-38 (MC38-luc) tumor cells were injected orthotopically into the rectal wall of C57BL6 mice. Targeted SCRT (5 gray (Gy) per fraction for 5 consecutive fractions) was administered to the tumor. Intratumoral innervation was determined by immunohistochemistry (IHC), local norepinephrine (NE) concentration was quantified by enzyme-linked immunosorbent assay (ELISA), and ß2-adrenergic receptor (B2AR) expression was assessed by flow cytometry. Chronic NE signaling was mirrored by daily isoproterenol treatment, and the effect on tumor burden was determined by overall survival, presence of metastatic lesions, and tumor size. Isoproterenol signaling was inhibited by administration of propranolol. RESULTS: Human RC patients with PNI have decreased overall survival compared with patients without PNI. In our mouse model, SCRT induced the expression of genes involved in neurogenesis, increased local NE secretion, and upregulated B2AR expression. Treating mice with isoproterenol resulted in decreased overall survival, increased rate of metastasis, and reduced SCRT efficacy. Interestingly, the isoproterenol-induced decrease in SCRT efficacy could be abrogated by blocking the BAR through the use of propranolol, suggesting a direct role of BAR stimulation on impairing SCRT responses. CONCLUSIONS: Our results indicate that while SCRT is a valuable treatment, it is accompanied by adverse effects on the nervous system that may impede the efficacy of therapy and promote tumor burden. Therefore, we could speculate that therapies aimed at targeting this signaling cascade or impairing nerve growth in combination with SCRT may prove beneficial in future cancer treatment.
Assuntos
Propranolol , Neoplasias Retais , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Isoproterenol , Propranolol/farmacologia , Camundongos Endogâmicos C57BL , Neoplasias Retais/patologiaRESUMO
Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8+ T cells. This signature was dependent on radiation-induced increases of Type I Interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.