RESUMO
BACKGROUND: The course of multiple sclerosis (MS) shows substantial inter-individual variability. The underlying determinants of disease severity likely involve genetic and environmental factors. OBJECTIVE: The aim of this study was to assess the impact of APOE and HLA polymorphisms as well as smoking and body mass index (BMI) in the very early MS course. METHODS: Untreated patients ( n = 263) with a recent diagnosis of relapsing-remitting (RR) MS or clinically isolated syndrome underwent standardized magnetic resonance imaging (MRI). Genotyping was performed for single-nucleotide polymorphisms (SNPs) rs3135388 tagging the HLA-DRB1*15:01 haplotype and rs7412 (Æ2) and rs429358 (Æ4) in APOE. Linear regression analyses were applied based on the three SNPs, smoking and BMI as exposures and MRI surrogate markers for disease severity as outcomes. RESULTS: Current smoking was associated with reduced gray matter fraction, lower brain parenchymal fraction and increased cerebrospinal fluid fraction in comparison to non-smoking, whereas no effect was observed on white matter fraction. BMI and the SNPs in HLA and APOE were not associated with structural MRI parameters. CONCLUSIONS: Smoking may have an unfavorable effect on the gray matter fraction as a potential measure of MS severity already in early MS. These findings may impact patients' counseling upon initial diagnosis of MS.
Assuntos
Apolipoproteínas E/genética , Encéfalo/patologia , Cadeias HLA-DRB1/genética , Esclerose Múltipla/etiologia , Fumar/efeitos adversos , Adolescente , Adulto , Idoso , Atrofia/genética , Índice de Massa Corporal , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único/genética , Adulto JovemRESUMO
OBJECTIVE: Natalizumab is known to prevent T-helper cells entering the central nervous system (CNS). We hypothesize that more pathogenic T-helper cells are present outside the CNS and a possible relationship to disease severity. METHODS: Characterization and enrichment of human CD4+IL-17+ cells were performed ex vivo using peripheral blood mononuclear cells from natalizumab-treated relapsing-remitting multiple sclerosis (RRMS) patients ( n = 33), untreated RRMS patients ( n = 13), and healthy controls ( n = 33). Magnetic resonance imaging (MRI) scans were performed routinely for patients. RESULTS: Lymphocytes were elevated in peripheral blood of natalizumab-treated patients compared to untreated patients and healthy controls. Whereas group comparison for CD4+IL-17+ numbers also differed, CD4+IFN-γ+ and CD4+IL-22+ counts were not increased. CD4+IL-17+ cells not only expressed but also secreted IL-17. In natalizumab-treated patients, IL-17+ cell frequency was found to correlate with T1-hypointense lesions, but was not an indicator for rebound activity after treatment discontinuation, except in one patient who experienced a fulminant rebound, and interestingly, in whom the highest IL-17+ cell levels were observed. CONCLUSION: Increased lymphocytes and CD4+IL-17+ cells in the blood of RRMS patients receiving natalizumab corroborate the drug's mechanism of action, that is, blocking transmigration to CNS. Correlation between IL-17-expressing lymphocytes and T1-hypointense lesions underlines the important role of these cells in the disease pathology.
Assuntos
Interleucina-17/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Natalizumab/uso terapêutico , Adolescente , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Genome-wide association studies (GWAS) successfully identified various chromosomal regions to be associated with multiple sclerosis (MS). The primary aim of this study was to replicate reported associations from GWAS using an exome array in a large German study. German MS cases (n = 4,476) and German controls (n = 5,714) were genotyped using the Illumina HumanExome v1-Chip. Genotype calling was performed with the Illumina Genome Studio(TM) Genotyping Module, followed by zCall. Single-nucleotide polymorphisms (SNPs) in seven regions outside the human leukocyte antigen (HLA) region showed genome-wide significant associations with MS (P values < 5 × 10(-8) ). These associations have been reported previously. In addition, SNPs in three previously reported regions outside the HLA region yielded P values < 10(-5) . The effect of nine SNPs in the HLA region remained (P < 10(-5) ) after adjustment for other significant SNPs in the HLA region. All of these findings have been reported before or are driven by known risk loci. In summary, findings from previous GWAS for MS could be successfully replicated. We conclude that the regions identified in previous GWAS are also associated in the German population. This reassures the need for detailed investigations of the functional mechanisms underlying the replicated associations.
Assuntos
Predisposição Genética para Doença , Antígenos HLA/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Exoma/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adulto JovemRESUMO
A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions.
Assuntos
Artefatos , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Europa (Continente) , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados UnidosRESUMO
Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system, which is thought to be triggered by environmental factors in genetically susceptible individuals leading to activation of autoreactive T lymphocytes. Large multi-centre genome-wide association studies have identified multiple genetic risk loci in multiple sclerosis. In this study, we investigated T cell transcriptomic changes in experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. We correlated these findings with the multiple sclerosis risk genes postulated by the most recent Immunochip analysis and found that multiple sclerosis susceptibility genes were significantly regulated in experimental autoimmune encephalomyelitis. Our data indicate that nine distinct genes associated with multiple sclerosis risk, Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7 and Thada, can be confirmed to be differentially regulated in pathogenic CD4(+) T cells. During the effector phase within the inflamed CNS, CD4(+) T cells undergo comprehensive transformation and we identified key transcription factors and signalling networks involved in this process. The transformation was linked to metabolic changes with the involvement of liver X receptor/retinoid X receptor signalling and cholesterol biosynthesis, which might control the T cell effector function in the central nervous system. Thus, our study confirms the involvement of multiple sclerosis risk genes in the pathophysiology of the animal model and sheds light on additional disease-relevant inflammatory networks.
Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental/genética , Redes Reguladoras de Genes/genética , Esclerose Múltipla/genética , Animais , Linfócitos T CD4-Positivos/patologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologiaRESUMO
OBJECTIVE: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. METHODS: The lead SNPs of all 11 loci were genotyped in 10â 796 MS cases and 10â 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. RESULTS: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21â 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101â 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10(-8)) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10(-12)), CD28 (rs6435203, p=1.35×10(-9)), LPP (rs4686953, p=3.35×10(-8)), ETS1 (rs3809006, p=7.74×10(-9)), DLEU1 (rs806349, p=8.14×10(-12)), LPIN3 (rs6072343, p=7.16×10(-12)) and IFNGR2 (rs9808753, p=4.40×10(-10)). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. CONCLUSIONS: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases.
Assuntos
Esclerose Múltipla/genética , Estudos de Casos e Controles , Frequência do Gene , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3'UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r (2) = 0.4). The binding of both microRNAs to the IL22RA2 3'UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio = 1.15, P = 3.48 × 10(-4)), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function.
Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina/genética , Sítios de Ligação , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , RNA Mensageiro/metabolismo , Fatores de RiscoRESUMO
OBJECTIVE: To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS). METHODS: This multicenter cohort study included 552 untreated patients recently diagnosed with CIS or RRMS according to the 2005 revised McDonald criteria. The single nucleotide polymorphisms rs429358 (ε4) and rs7412 (ε2) of the APOE haplotype were assessed by allelic discrimination assays. Cognitive performance was evaluated using the 3-second paced auditory serial addition test and the Multiple Sclerosis Inventory Cognition (MUSIC). Sum scores were calculated to approximate the overall cognitive performance and memory-centered cognitive functions. The impact of the APOE carrier status on cognitive performance was assessed using multiple linear regression models, also including demographic, clinical, MRI, and lifestyle factors. RESULTS: APOE ε4 homozygosity was associated with lower overall cognitive performance, whereas no relevant association was observed for APOE ε4 heterozygosity or APOE ε2 carrier status. Furthermore, higher disability levels, MRI lesion load, and depressive symptoms were associated with lower cognitive performance. Patients consuming alcohol had higher test scores than patients not consuming alcohol. Female sex, lower disability, and alcohol consumption were associated with better performance in the memory-centered subtests of MUSIC, whereas no relevant association was observed for APOE carrier status. CONCLUSION: Along with parameters of a higher disease burden, APOE ε4 homozygosity was identified as a potential predictor of cognitive performance in this large cohort of patients with CIS and early RRMS.
Assuntos
Apolipoproteína E4/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/genética , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo de Nucleotídeo ÚnicoAssuntos
Repetição de Anquirina , Proteínas de Transporte/genética , Estudo de Associação Genômica Ampla , Esclerose Múltipla/genética , Adulto , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
INTRODUCTION: Approved medications for relapsing-remitting multiple sclerosis have shown to be effective in terms of their anti-inflammatory potential. However, it is also crucial to evaluate what long-term effects a patient can expect from current MS drugs in terms of preventing neurodegeneration. Here we aim to provide an overview of the current treatment strategies in MS with a specific focus on potential neuroprotective effects. Areas covered: Randomized, double-blind and placebo or referral-drug controlled phase 2a/b and phase 3 trials were examined; non-blinded phase 4 studies (extension studies) were included to provide long-term data, if not otherwise available. Endpoints considered were expanded disability status scale, various neuropsychological tests, percent brain volume change and T1-hypointense lesions as well as multiple sclerosis functional composite, confirmed disease progression, and no evidence of disease activity. Expert commentary: Overall, neuroprotective functions of classical MS therapeutics are not sufficiently investigated, but available data show limited effects. Thus, further research and development in neuroprotection are warranted. When counselling patients, potential long-term beneficial effects should be presented more conservatively.
Assuntos
Imunossupressores/uso terapêutico , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroimagem , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Avaliação da Deficiência , Progressão da Doença , Humanos , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Testes Neuropsicológicos , Resultado do TratamentoRESUMO
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.
Assuntos
Epigênese Genética , Predisposição Genética para Doença , Esclerose Múltipla/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Glicina Hidroximetiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Locos de Características Quantitativas , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética , Adulto JovemRESUMO
Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01-HLA-DRB1*15:01 and HLA-DQB1*03:01-HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles.