Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(1): 9-17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38147829

RESUMO

Deep learning has become a powerful and frequently employed tool for the prediction of molecular properties, thus creating a need for open-source and versatile software solutions that can be operated by nonexperts. Among the current approaches, directed message-passing neural networks (D-MPNNs) have proven to perform well on a variety of property prediction tasks. The software package Chemprop implements the D-MPNN architecture and offers simple, easy, and fast access to machine-learned molecular properties. Compared to its initial version, we present a multitude of new Chemprop functionalities such as the support of multimolecule properties, reactions, atom/bond-level properties, and spectra. Further, we incorporate various uncertainty quantification and calibration methods along with related metrics as well as pretraining and transfer learning workflows, improved hyperparameter optimization, and other customization options concerning loss functions or atom/bond features. We benchmark D-MPNN models trained using Chemprop with the new reaction, atom-level, and spectra functionality on a variety of property prediction data sets, including MoleculeNet and SAMPL, and observe state-of-the-art performance on the prediction of water-octanol partition coefficients, reaction barrier heights, atomic partial charges, and absorption spectra. Chemprop enables out-of-the-box training of D-MPNN models for a variety of problem settings in fast, user-friendly, and open-source software.


Assuntos
Aprendizado de Máquina , Software , Redes Neurais de Computação , Fenômenos Químicos , Água
2.
J Chem Inf Model ; 62(16): 3854-3862, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35938299

RESUMO

High-throughput virtual screening is an indispensable technique utilized in the discovery of small molecules. In cases where the library of molecules is exceedingly large, the cost of an exhaustive virtual screen may be prohibitive. Model-guided optimization has been employed to lower these costs through dramatic increases in sample efficiency compared to random selection. However, these techniques introduce new costs to the workflow through the surrogate model training and inference steps. In this study, we propose an extension to the framework of model-guided optimization that mitigates inference costs using a technique we refer to as design space pruning (DSP), which irreversibly removes poor-performing candidates from consideration. We study the application of DSP to a variety of optimization tasks and observe significant reductions in overhead costs while exhibiting similar performance to the baseline optimization. DSP represents an attractive extension of model-guided optimization that can limit overhead costs in optimization settings where these costs are non-negligible relative to objective costs, such as docking.


Assuntos
Ensaios de Triagem em Larga Escala , Fluxo de Trabalho
3.
J Chem Inf Model ; 62(19): 4660-4671, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36112568

RESUMO

In molecular discovery and drug design, structure-property relationships and activity landscapes are often qualitatively or quantitatively analyzed to guide the navigation of chemical space. The roughness (or smoothness) of these molecular property landscapes is one of their most studied geometric attributes, as it can characterize the presence of activity cliffs, with rougher landscapes generally expected to pose tougher optimization challenges. Here, we introduce a general, quantitative measure for describing the roughness of molecular property landscapes. The proposed roughness index (ROGI) is loosely inspired by the concept of fractal dimension and strongly correlates with the out-of-sample error achieved by machine learning models on numerous regression tasks.


Assuntos
Desenho de Fármacos , Aprendizado de Máquina
4.
J Am Chem Soc ; 142(13): 5974-5979, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182054

RESUMO

An enantioselective, radical-based method for the intramolecular hydroamination of alkenes with sulfonamides is reported. These reactions are proposed to proceed via N-centered radicals formed by proton-coupled electron transfer (PCET) activation of sulfonamide N-H bonds. Noncovalent interactions between the neutral sulfonamidyl radical and a chiral phosphoric acid generated in the PCET event are hypothesized to serve as the basis for asymmetric induction in a subsequent C-N bond forming step, achieving selectivities of up to 98:2 er. These results offer further support for the ability of noncovalent interactions to enforce stereoselectivity in reactions of transient and highly reactive open-shell intermediates.


Assuntos
Alcenos/química , Sulfonamidas/química , Aminação , Transporte de Elétrons , Elétrons , Prótons , Estereoisomerismo
5.
J Am Chem Soc ; 140(2): 741-747, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29268020

RESUMO

Here we report a catalytic method for the intermolecular anti-Markovnikov hydroamination of unactivated alkenes using primary and secondary sulfonamides. These reactions occur at room temperature under visible light irradiation and are jointly catalyzed by an iridium(III) photocatalyst, a dialkyl phosphate base, and a thiol hydrogen atom donor. Reaction outcomes are consistent with the intermediacy of an N-centered sulfonamidyl radical generated via proton-coupled electron transfer activation of the sulfonamide N-H bond. Studies outlining the synthetic scope (>60 examples) and mechanistic features of the reaction are presented.

6.
Chem Sci ; 12(22): 7866-7881, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168840

RESUMO

Structure-based virtual screening is an important tool in early stage drug discovery that scores the interactions between a target protein and candidate ligands. As virtual libraries continue to grow (in excess of 108 molecules), so too do the resources necessary to conduct exhaustive virtual screening campaigns on these libraries. However, Bayesian optimization techniques, previously employed in other scientific discovery problems, can aid in their exploration: a surrogate structure-property relationship model trained on the predicted affinities of a subset of the library can be applied to the remaining library members, allowing the least promising compounds to be excluded from evaluation. In this study, we explore the application of these techniques to computational docking datasets and assess the impact of surrogate model architecture, acquisition function, and acquisition batch size on optimization performance. We observe significant reductions in computational costs; for example, using a directed-message passing neural network we can identify 94.8% or 89.3% of the top-50 000 ligands in a 100M member library after testing only 2.4% of candidate ligands using an upper confidence bound or greedy acquisition strategy, respectively. Such model-guided searches mitigate the increasing computational costs of screening increasingly large virtual libraries and can accelerate high-throughput virtual screening campaigns with applications beyond docking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA