Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Appl Microbiol Biotechnol ; 107(17): 5503-5516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439834

RESUMO

In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.


Assuntos
Carboxil e Carbamoil Transferases , Rhodococcus , Triglicerídeos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Nitrogênio/metabolismo
2.
J Antimicrob Chemother ; 77(11): 3050-3063, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35972206

RESUMO

BACKGROUND: The overprescription and misuse of classical antimicrobial compounds to treat gastrointestinal or systemic salmonellosis have been accelerating the surge of antibiotic-recalcitrant bacterial populations, posing a major public health challenge. Therefore, alternative therapeutic approaches to treat Salmonella infections are urgently required. OBJECTIVES: To identify and characterize actinobacterial secreted compounds with inhibitory properties against the Salmonella enterica PhoP/PhoQ signal transduction system, crucial for virulence regulation. METHODS: The methodology was based on a combination of the measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes and bioguided assays to screen for bioactive inhibitory metabolites present in culture supernatants obtained from a collection of actinobacterial isolates. Analogues of azomycin were used to analyse the functional groups required for the detected bioactivity and Salmonella mutants and complemented strains helped to dissect the azomycin mechanism of action. The tetrazolium dye colorimetric assay was used to investigate azomycin potential cytotoxicity on cultured macrophages. Salmonella intramacrophage replication capacity upon azomycin treatment was assessed using the gentamicin protection assay. RESULTS: Sublethal concentrations of azomycin, a nitroheterocyclic compound naturally produced by Streptomyces eurocidicus, repressed the Salmonella PhoP/PhoQ system activity by targeting PhoP and inhibiting its transcriptional activity in a PhoQ- and aspartate phosphorylation-independent manner. Sublethal, non-cytotoxic concentrations of azomycin prevented Salmonella intramacrophage replication. CONCLUSIONS: Azomycin selectively inhibits the activity of the Salmonella virulence regulator PhoP, a new activity described for this nitroheterocyclic compound that can be repurposed to develop novel anti-Salmonella therapeutic approaches.


Assuntos
Produtos Biológicos , Infecções por Salmonella , Salmonella enterica , Streptomyces , Humanos , Salmonella enterica/genética , Produtos Biológicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Salmonella/microbiologia , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Microb Cell Fact ; 21(1): 10, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033081

RESUMO

BACKGROUND: A broad diversity of natural and non-natural esters have now been made in bacteria, and in other microorganisms, as a result of original metabolic engineering approaches. However, the fact that the properties of these molecules, and therefore their applications, are largely defined by the structural features of the fatty acid and alcohol moieties, has driven a persistent interest in generating novel structures of these chemicals. RESULTS: In this research, we engineered Escherichia coli to synthesize de novo esters composed of multi-methyl-branched-chain fatty acids and short branched-chain alcohols (BCA), from glucose and propionate. A coculture engineering strategy was developed to avoid metabolic burden generated by the reconstitution of long heterologous biosynthetic pathways. The cocultures were composed of two independently optimized E. coli strains, one dedicated to efficiently achieve the biosynthesis and release of the BCA, and the other to synthesize the multi methyl-branched fatty acid and the corresponding multi-methyl-branched esters (MBE) as the final products. Response surface methodology, a cost-efficient multivariate statistical technique, was used to empirical model the BCA-derived MBE production landscape of the coculture and to optimize its productivity. Compared with the monoculture strategy, the utilization of the designed coculture improved the BCA-derived MBE production in 45%. Finally, the coculture was scaled up in a high-cell density fed-batch fermentation in a 2 L bioreactor by fine-tuning the inoculation ratio between the two engineered E. coli strains. CONCLUSION: Previous work revealed that esters containing multiple methyl branches in their molecule present favorable physicochemical properties which are superior to those of linear esters. Here, we have successfully engineered an E. coli strain to broaden the diversity of these molecules by incorporating methyl branches also in the alcohol moiety. The limited production of these esters by a monoculture was considerable improved by a design of a coculture system and its optimization using response surface methodology. The possibility to scale-up this process was confirmed in high-cell density fed-batch fermentations.


Assuntos
Álcoois/metabolismo , Escherichia coli/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Engenharia Metabólica , Álcoois/química , Reatores Biológicos , Vias Biossintéticas , Técnicas de Cocultura , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ésteres/química , Ácidos Graxos/química , Fermentação , Glucose/metabolismo , Metilação , Propionatos/metabolismo
4.
Arch Microbiol ; 203(5): 2171-2182, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620522

RESUMO

In Mycobacterium tuberculosis, heparin-binding hemagglutinin (HBHAMT) has a relevant role in infection. It is also present in non-virulent mycobacteria and ancient actinobacteria, such as Rhodococcus opacus. To have a better understanding of the underlying mechanisms that shaped the evolutionary divergence of these proteins, we performed a comprehensive phylogenetic analysis of the regulatory sequences that drive the expression of hbha in saprophytic and pathogenic mycobacterial species. The alignment of the hbha loci showed the appearance of intergenic sequences containing regulatory elements upstream the hbha gene; this sequence arrangement is present only in slow-growing pathogenic mycobacteria. The heterologous expression of HBHAMT in oleaginous R. opacus PD630 results in protein binding to lipid droplets, as it happens with HBHA proteins from saprophytic mycobacteria. We hypothesize that mycobacterial hbha gene cluster underwent functional divergence during the evolutionary differentiation of slow-growing pathogenic mycobacteria. We propose here an evolutionary scenario to explain the structural and functional divergence of HBHA in fast and slow-growing mycobacteria.


Assuntos
Lectinas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fatores de Virulência/genética , Evolução Molecular , Gotículas Lipídicas/metabolismo , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/metabolismo , Filogenia , Ligação Proteica/fisiologia , Rhodococcus/genética
5.
Appl Microbiol Biotechnol ; 104(20): 8705-8718, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910267

RESUMO

Plant waxes are interesting substitutes of fossil-derived compounds; however, their limited sources and narrow structural diversity prompted the development of microbial platforms to produce esters with novel chemical structures and properties. One successful strategy was the heterologous expression of the mycocerosic polyketide synthase-based biosynthetic pathway (MAS-PKS, PapA5 and FadD28 enzymes) from Mycobacterium tuberculosis in Escherichia coli. This recombinant strain has the ability to produce a broad spectrum of multimethyl-branched long-chain esters (MBE) with novel chemical structures and high oxidation stability. However, one limitation of this microbial platform was the low yields obtained for MBE derived of short-chain alcohols. In an attempt to improve the titers of the short-chain alcohol-derived MBE, we focused on the PapA5 acyltransferase-enzyme that catalyzes the ester formation reaction. Specific amino acid residues located in the two-substrate recognition channels of this enzyme were identified, rationally mutated, and the corresponding mutants characterized both in vivo and in vitro. The phenylalanine located at 331 position in PapA5 (F331) was found to be a key residue that when substituted by other bulky and aromatic or bulky and polar amino acid residues (F331W, F331Y or F331H), gave rise to PapA5 mutants with improved bioconversion efficiency; showing in average, 2.5 higher yields of short-chain alcohol-derived MBE compared with the wild-type enzyme. Furthermore, two alternative pathways for synthetizing ethanol were engineered into the MBE producer microorganism, allowing de novo production of ethanol-derived MBE at levels comparable with those obtained by the external supply of this alcohol. KEY POINTS: • Mutation in channel 2 changes PapA5 acyltransferase bioconversion efficiency. • Improved production of short-chain alcohol derived multimethyl-branched esters. • Establishing ethanologenic pathways for de novo production of ethanol derived MBE. • Characterization of a novel phenylethanol-derived MBE.


Assuntos
Aciltransferases , Mycobacterium tuberculosis , Aciltransferases/genética , Escherichia coli/genética , Ésteres , Etanol
6.
Mol Microbiol ; 103(2): 366-385, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27786393

RESUMO

The regulatory mechanisms involved in lipogenesis and triacylglycerol (TAG) accumulation are largely unknown in oleaginous rhodococci. In this study a regulatory protein (here called NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci was identified. Under nitrogen deprivation conditions, in which TAG accumulation is stimulated, the nlpR gene was significantly upregulated, whereas a significant decrease of its expression and TAG accumulation occurred when cerulenin was added. The nlpR disruption negatively affected the nitrate/nitrite reduction as well as lipid biosynthesis under nitrogen-limiting conditions. In contrast, its overexpression increased TAG production during cultivation of cells in nitrogen-rich media. A putative 'NlpR-binding motif' upstream of several genes related to nitrogen and lipid metabolisms was found. The nlpR disruption in RHA1 strain led to a reduced transcription of genes involved in nitrate/nitrite assimilation, as well as in fatty acid and TAG biosynthesis. Purified NlpR was able to bind to narK, nirD, fasI, plsC and atf3 promoter regions. It was suggested that NlpR acts as a pleiotropic transcriptional regulator by activating of nitrate/nitrite assimilation genes and others genes involved in fatty acid and TAG biosynthesis, in response to nitrogen deprivation.


Assuntos
Nitrogênio/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipogênese/fisiologia , Nitritos/metabolismo , Fatores de Transcrição/genética
7.
Metab Eng ; 49: 94-104, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30036678

RESUMO

The development of new heterologous hosts for polyketides production represents an excellent opportunity to expand the genomic, physiological, and biochemical backgrounds that better fit the sustainable production of these valuable molecules. Cyanobacteria are particularly attractive for the production of natural compounds because they have minimal nutritional demands and several strains have well established genetic tools. Using the model strain Synechococcus elongatus, a generic platform was developed for the heterologous production of polyketide synthase (PKS)-derived compounds. The versatility of this system is based on interchangeable modules harboring promiscuous enzymes for PKS activation and the production of PKS extender units, as well as inducible circuits for a regulated expression of the PKS biosynthetic gene cluster. To assess the capability of this platform, we expressed the mycobacterial PKS-based mycocerosic biosynthetic pathway to produce multimethyl-branched esters (MBE). This work is a foundational step forward for the production of high value polyketides in a photosynthetic microorganism.


Assuntos
Engenharia Metabólica , Microrganismos Geneticamente Modificados , Policetídeos/metabolismo , Synechococcus , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
8.
Appl Microbiol Biotechnol ; 101(8): 3043-3053, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28275821

RESUMO

Conventional petroleum-based chemical industry, although economically still thriving, is now facing great socio-political challenges due to the increasing concerns on climate change and limited availability of fossil resources. In this context, microbial production of fuels and commodity oleochemicals from renewable biomass is being considered a promising sustainable alternative. The increasing understanding of cellular systems has enabled the redesign of microbial metabolism for the production of compounds present in many daily consumer products such as esters, waxes, fatty acids (FA) and fatty alcohols. Small aliphatic esters are important flavour and fragrance elements while long-chain esters, composed of FA esterified to fatty alcohols, are widely used in lubricant formulas, paints, coatings and cosmetics. Here, we review recent advances in the biosynthesis of these types of mono alkyl esters in vivo. We focus on the critical ester bond-forming enzymes and the latest metabolic engineering strategies employed for the biosynthesis of a wide range of products ranging from low-molecular-weight esters to waxy compounds.


Assuntos
Escherichia coli/metabolismo , Ésteres/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Biocombustíveis , Escherichia coli/enzimologia , Escherichia coli/genética , Ésteres/química , Ácidos Graxos/metabolismo , Álcoois Graxos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
9.
Appl Microbiol Biotechnol ; 100(16): 7239-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27270600

RESUMO

Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate.


Assuntos
Actinobacteria/metabolismo , Acil Coenzima A/metabolismo , Corynebacterium/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Mycobacterium smegmatis/metabolismo , Streptomyces/metabolismo , Acil Coenzima A/análise , Cromatografia Líquida de Alta Pressão/métodos , Inibidores da Síntese de Ácidos Graxos/farmacologia , Isoniazida/farmacologia , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas por Ionização por Electrospray
10.
Appl Environ Microbiol ; 81(19): 6649-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187964

RESUMO

Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production.


Assuntos
Alantoína/biossíntese , Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Transcrição Gênica
11.
Appl Microbiol Biotechnol ; 99(5): 2191-207, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25213912

RESUMO

Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.


Assuntos
Expressão Gênica , Fosfatidato Fosfatase/biossíntese , Rhodococcus/enzimologia , Rhodococcus/metabolismo , Triglicerídeos/metabolismo , Diglicerídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Deleção de Genes , Ácidos Fosfatídicos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rhodococcus/genética
12.
Metab Eng ; 24: 97-106, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831705

RESUMO

Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Engenharia Metabólica , Mycobacterium tuberculosis , Policetídeos/metabolismo , Aciltransferases/biossíntese , Aciltransferases/genética , Carbono-Enxofre Ligases/biossíntese , Carbono-Enxofre Ligases/genética , Escherichia coli/enzimologia , Escherichia coli/genética
13.
Appl Microbiol Biotechnol ; 98(1): 351-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292080

RESUMO

Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.


Assuntos
Alantoína/biossíntese , Alantoína/metabolismo , Antibacterianos/biossíntese , Streptomyces coelicolor/metabolismo , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Metabolômica , Nitrogênio/metabolismo , Proteômica , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
14.
Front Microbiol ; 15: 1366111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591044

RESUMO

PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.

15.
Plant Sci ; 343: 112073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522657

RESUMO

Sustainable agriculture based on the use of soil-beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCA) is gaining great consideration to reduce the use of agrochemicals for crop production. With this aim, in this study, a total of 78 actinobacteria were isolated from the rhizosphere and endosphere of soybean roots. Based on in vitro compatibility with Bradyrhizobium japonicum, the ability to produce phytohormones, siderophores, exo-enzymes, antifungal compounds and phosphate solubilization (PGPR traits), two endophytic strains, named N2A and N9, were selected to evaluate their effects on plant growth and development at greenhouse and field conditions. Greenhouse trials showed significantly promoted seedling emergence compared to control and the conventional fungicide treatment. Analysis of growth and development associated parameters at reproductive stages and maturity at greenhouse, but also and most importantly, in field experiments showed significant improvements. Plant biomass, node number, pod number, and consequently yield, were higher in plants previously treated with N2A and co-inoculated with B. japonicum compared to the conventional seed treatment. Furthermore, a significant increase in health status and vigor was observed for seeds harvested from the N2A-treated plants in relation to seeds obtained from the conventional treatment. Thus, we demonstrated that Streptomyces sp. N2A can replace traditional chemical fungicides to protect the seed during germination, allowing good implantation, but also, stimulating the growth and development of soybean crop increasing yield and seed quality at field conditions. Altogether, this supports the potential use of Streptomyces N2A as a PGPR for soybean crop production more efficiently and sustainably.


Assuntos
Glycine max , Streptomyces , Reguladores de Crescimento de Plantas , Desenvolvimento Vegetal , Sementes/microbiologia
16.
Microbiol Resour Announc ; 13(3): e0121523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38315107

RESUMO

In this work, we report the discovery and characterization of Garey24, a bacteriophage that forms medium-size plaques with halo rings isolated from a soil sample in Funes, Argentina. Its 41,522 bp circularly permuted genome contains 63 putative protein-coding genes. Based on gene content similarity, Garey24 was assigned to subcluster EA1.

17.
Antimicrob Agents Chemother ; 57(2): 907-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208707

RESUMO

We have synthesized new derivatives of the macrolide antibiotics erythromycin and azithromycin. Novel deoxysugar moieties were attached to these standard antibiotics by biotransformation using a heterologous host. The resulting compounds were tested against several standard laboratory and clinically isolated bacterial strains. In addition, they were also tested in vitro against standard and drug-resistant strains of human malaria parasites (Plasmodium falciparum) and the liver stages of the rodent malaria parasite (Plasmodium berghei). Antibacterial activity of modified erythromycin and azithromycin showed no improvement over the unmodified macrolides, but the modified compounds showed a 10-fold increase in effectiveness after a short-term exposure against blood stages of malaria. The new compounds also remained active against azithromycin-resistant strains of P. falciparum and inhibited growth of liver-stage parasites at concentrations similar to those used for primaquine. Our findings show that malaria parasites have two distinct responses to macrolide antibiotics, one reflecting the prokaryotic origin of the apicoplast and a second, as-yet uncharacterized response that we attribute to the eukaryotic nature of the parasite. This is the first report for macrolides that target two different functions in the Plasmodium parasites.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Eritromicina/análogos & derivados , Eritromicina/farmacologia , Macrolídeos/síntese química , Macrolídeos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento
18.
Microb Cell Fact ; 12: 9, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23356794

RESUMO

BACKGROUND: Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. RESULTS: We have identified two S. coelicolor genes, named lppα (SCO1102) and lppß (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppß genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppß had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppß in the wild type strain of S. coelicolor led to a significant increase in TAG production. CONCLUSIONS: The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single cell oil. Altogether, these results provide new elements and tools for future cell engineering for next-generation biofuels production.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatidato Fosfatase/metabolismo , Streptomyces coelicolor/enzimologia , Triglicerídeos/biossíntese , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Diglicerídeos/metabolismo , Escherichia coli/metabolismo , Fosfatidato Fosfatase/classificação , Fosfatidato Fosfatase/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo
19.
Appl Microbiol Biotechnol ; 97(5): 2119-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22926642

RESUMO

Rhodococcus opacus PD630 is an oleaginous bacterium able to accumulate large amounts of triacylglycerols (TAG) in different carbon sources. The last reaction for TAG biosynthesis is catalyzed by the bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) enzymes encoded by atf genes. R. opacus PD630 possesses at least 17 putative atf homologous genes in its genome, but only atf1 and atf2 exhibited a significant DGAT activity when expressed in E. coli, as revealed in a previous study. The contribution of atf1 gene to TAG accumulation by strain PD630 has been demonstrated previously, although additional Atfs may also contribute to lipid accumulation, since the atf1-disrupted mutant is still able to produce significant amounts of TAG (Alvarez et al., Microbiology 154:2327-2335, 2008). In this study, we investigated the in vivo role of atf2 gene in TAG accumulation by R. opacus PD630 by using different genetic strategies. The atf2-disrupted mutant exhibited a decrease in TAG accumulation (up to 25-30 %, w/w) and an approximately tenfold increase in glycogen formation in comparison with the wild-type strain. Surprisingly, in contrast to single mutants, a double mutant generated by the disruption of atf1 and atf2 genes only showed a very low effect in TAG and in glycogen accumulation under lipid storage conditions. Overexpression of atf1 and atf2 genes in strain PD630 promoted an increase of approximately 10 % (w/w) in TAG accumulation, while heterologous expression of atf2 gene in Mycobacterium smegmatis caused an increase in TAG accumulation during cultivation in nitrogen-rich media. This study demonstrated that, in addition to atf1 gene, atf2 is actively involved in TAG accumulation by the oleaginous R. opacus PD630.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Rhodococcus/enzimologia , Rhodococcus/metabolismo , Triglicerídeos/biossíntese , Clonagem Molecular , Meios de Cultura/química , Diacilglicerol O-Aciltransferase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Técnicas de Inativação de Genes , Glicogênio/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Nitrogênio/metabolismo , Rhodococcus/genética
20.
PLoS One ; 18(7): e0288509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459319

RESUMO

The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.


Assuntos
Diacilglicerol O-Aciltransferase , Ésteres , Regiões Antárticas , Ésteres/metabolismo , Bactérias/metabolismo , Triglicerídeos , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA