Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2202527119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858428

RESUMO

Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the trans side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law [Formula: see text]. A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.


Assuntos
DNA , Nanoporos , Transporte Biológico , DNA/metabolismo , Fímbrias Bacterianas/metabolismo , Cinética
2.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395062

RESUMO

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Assuntos
Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Streptococcus pneumoniae , Peptídeos Antimicrobianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
Mol Biol Evol ; 38(6): 2396-2412, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533884

RESUMO

The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


Assuntos
Evolução Biológica , Divisão Celular/genética , Firmicutes/genética , Família Multigênica , Simulação por Computador , Sintenia
4.
Mol Microbiol ; 116(4): 1099-1112, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411374

RESUMO

Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of ß-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Bacillus subtilis/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação
5.
Proc Natl Acad Sci U S A ; 115(11): 2812-2817, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29487215

RESUMO

Most bacterial cells are surrounded by an essential cell wall composed of the net-like heteropolymer peptidoglycan (PG). Growth and division of bacteria are intimately linked to the expansion of the PG meshwork and the construction of a cell wall septum that separates the nascent daughter cells. Class A penicillin-binding proteins (aPBPs) are a major family of PG synthases that build the wall matrix. Given their central role in cell wall assembly and importance as drug targets, surprisingly little is known about how the activity of aPBPs is controlled to properly coordinate cell growth and division. Here, we report the identification of MacP (SPD_0876) as a membrane-anchored cofactor of PBP2a, an aPBP synthase of the Gram-positive pathogen Streptococcus pneumoniae We show that MacP localizes to the division site of S. pneumoniae, forms a complex with PBP2a, and is required for the in vivo activity of the synthase. Importantly, MacP was also found to be a substrate for the kinase StkP, a global cell cycle regulator. Although StkP has been implicated in controlling the balance between the elongation and septation modes of cell wall synthesis, none of its substrates are known to modulate PG synthetic activity. Here we show that a phosphoablative substitution in MacP that blocks StkP-mediated phosphorylation prevents PBP2a activity without affecting the MacP-PBP2a interaction. Our results thus reveal a direct connection between PG synthase function and the control of cell morphogenesis by the StkP regulatory network.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Coenzimas/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular/genética , Parede Celular/metabolismo , Coenzimas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação às Penicilinas/genética , Fosforilação , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
6.
Bioinformatics ; 35(2): 329-331, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29912383

RESUMO

Summary: The exploration and comparison of genome organization is routinely used in the frame of genomic and phylogenomic analyses. As a consequence, in the past few years, various tools allowing visualizing genomic contexts have been developed. However, their use is often hampered by a lack of flexibility, particularly concerning associated databases input formats and figure customization. Here we present GeneSpy, a graphical user interface that allows the visualization and dynamic exploration of eukaryotic and prokaryotic annotated genomes. GeneSpy relies on user-friendly manageable local databases and allows the easy customization and production of figures in a multitude of formats. Availability and implementation: GeneSpy is freely available at https://lbbe.univ-lyon1.fr/GeneSpy/ for Linux, Mac OS and Windows under CeCILL license (http://www.cecill.info/licences/). It is written in Python 2.7 and depends on Matplotlib, Tkinter and Sqlite libraries. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Gráficos por Computador , Genômica , Software , Interface Usuário-Computador , Biologia Computacional , Bases de Dados Genéticas , Genoma
7.
Nature ; 516(7530): 259-262, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25470041

RESUMO

In every living organism, cell division requires accurate identification of the division site and placement of the division machinery. In bacteria, this process is traditionally considered to begin with the polymerization of the highly conserved tubulin-like protein FtsZ into a ring that locates precisely at mid-cell. Over the past decades, several systems have been reported to regulate the spatiotemporal assembly and placement of the FtsZ ring. However, the human pathogen Streptococcus pneumoniae, in common with many other organisms, is devoid of these canonical systems and the mechanisms of positioning the division machinery remain unknown. Here we characterize a novel factor that locates at the division site before FtsZ and guides septum positioning in pneumococcus. Mid-cell-anchored protein Z (MapZ) forms ring structures at the cell equator and moves apart as the cell elongates, therefore behaving as a permanent beacon of division sites. MapZ then positions the FtsZ ring through direct protein-protein interactions. MapZ-mediated control differs from previously described systems mostly on the basis of negative regulation of FtsZ assembly. Furthermore, MapZ is an endogenous target of the Ser/Thr kinase StkP, which was recently shown to have a central role in cytokinesis and morphogenesis of S. pneumoniae. We show that both phosphorylated and non-phosphorylated forms of MapZ are required for proper Z-ring formation and dynamics. Altogether, this work uncovers a new mechanism for bacterial cell division that is regulated by phosphorylation and illustrates that nature has evolved a diversity of cell division mechanisms adapted to the different bacterial clades.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinese , Proteínas do Citoesqueleto/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Transporte Proteico , Tubulina (Proteína)/metabolismo
8.
PLoS Genet ; 11(9): e1005518, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26378458

RESUMO

Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation to ensure that daughter cells are properly wrapped in CPS.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo Celular , Galactosiltransferases/metabolismo , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Divisão Celular , Galactosiltransferases/química , Dados de Sequência Molecular , Fosforilação , Polissacarídeos/metabolismo , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo
9.
PLoS Genet ; 10(4): e1004275, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722178

RESUMO

Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.


Assuntos
Divisão Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Morfogênese/fisiologia , Peptidoglicano/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Mapas de Interação de Proteínas/fisiologia , Streptococcus pneumoniae/genética
10.
Mol Microbiol ; 97(1): 139-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25845974

RESUMO

Although many membrane Ser/Thr-kinases with PASTA motifs have been shown to control bacterial cell division and morphogenesis, inactivation of the Ser/Thr-kinase PrkC does not impact Bacillus subtilis cell division. In this study, we show that PrkC localizes at the division septum. In addition, three proteins involved in cell division/elongation, GpsB, DivIVA and EzrA are required for stimulating PrkC activity in vivo. We show that GpsB interacts with the catalytic subunit of PrkC that, in turn, phosphorylates GpsB. These observations are not made with DivIVA and EzrA. Consistent with the phosphorylated residue previously detected for GpsB in a high-throughput phosphoproteomic analysis of B. subtilis, we show that threonine 75 is the single PrkC-mediated phosphorylation site in GpsB. Importantly, the substitution of this threonine by a phospho-mimetic residue induces a loss of PrkC kinase activity in vivo and a reduced growth under high salt conditions as observed for gpsB and prkC null mutants. Conversely, substitution of threonine 75 by a phospho-ablative residue does not induce such growth and PrkC kinase activity defects. Altogether, these data show that proteins of the divisome control PrkC activity and thereby phosphorylation of PrkC substrates through a negative feedback loop in B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retroalimentação Fisiológica , Proteína Quinase C/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Divisão Celular , Fosforilação , Proteína Quinase C/química , Estrutura Terciária de Proteína , Serina/metabolismo , Treonina/metabolismo
11.
J Biol Chem ; 289(34): 23662-9, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25012659

RESUMO

The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , Mutação , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacitracina/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Western Blotting , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Fosforilação , Espectrometria de Massas em Tandem , Treonina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
J Biol Chem ; 288(21): 15212-28, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23543749

RESUMO

The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Regulação Alostérica/fisiologia , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas Fosfatases/genética , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/genética
13.
Nucleic Acids Res ; 40(Database issue): D321-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080550

RESUMO

Bacterial tyrosine-kinases share no resemblance with their eukaryotic counterparts and they have been unified in a new protein family named BY-kinases. These enzymes have been shown to control several biological functions in the bacterial cells. In recent years biochemical studies, sequence analyses and structure resolutions allowed the deciphering of a common signature. However, BY-kinase sequence annotations in primary databases remain incomplete. This prompted us to develop a specialized database of computer-annotated BY-kinase sequences: the Bacterial protein tyrosine-kinase database (BYKdb). BY-kinase sequences are first identified, thanks to a workflow developed in a previous work. A second workflow annotates the UniProtKB entries in order to provide the BYKdb entries. The database can be accessed through a web interface that allows static and dynamic queries and offers integrated sequence analysis tools. BYKdb can be found at http://bykdb.ibcp.fr.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Bases de Dados de Proteínas , Proteínas Tirosina Quinases/química , Anotação de Sequência Molecular , Análise de Sequência de Proteína , Interface Usuário-Computador
14.
Microbiol Spectr ; 12(2): e0363823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214521

RESUMO

Drug-resistant bacteria are a serious threat to human health as antibiotics are gradually losing their clinical efficacy. Comprehending the mechanism of action of antimicrobials and their resistance mechanisms plays a key role in developing new agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic that selectively disrupts Gram-positive bacterial membranes, thereby showing slower resistance development than many classical drugs. Consequently, it is often used as a last resort antibiotic to preserve its use as one of the least potent antibiotics at our disposal. The mode of action of daptomycin has been debated but was recently found to involve the formation of a tripartite complex between undecaprenyl precursors of cell wall biosynthesis and the anionic phospholipid phosphatidylglycerol. BceAB-type ABC transporters are known to confer resistance to antimicrobial peptides that sequester some precursors of the peptidoglycan, such as the undecaprenyl pyrophosphate or lipid II. The expression of these transporters is upregulated by dedicated two-component regulatory systems in the presence of antimicrobial peptides that are recognized by the system. Here, we investigated whether daptomycin evades resistance mediated by the BceAB transporter from the bacterial pathogen Streptococcus pneumoniae. Although daptomycin can bind to the transporter, our data showed that the BceAB transporter does not mediate resistance to the drug and its expression is not induced in its presence. These findings show that the pioneering membrane-active daptomycin has the potential to escape the resistance mechanism mediated by BceAB-type transporters and confirm that the development of this class of compounds has promising clinical applications.IMPORTANCEAntibiotic resistance is rising in all parts of the world. New resistance mechanisms are emerging and dangerously spreading, threatening our ability to treat common infectious diseases. Daptomycin is an antimicrobial peptide that is one of the last antibiotics approved for clinical use. Understanding the resistance mechanisms toward last-resort antibiotics such as daptomycin is critical for the success of future antimicrobial therapies. BceAB-type ABC transporters confer resistance to antimicrobial peptides that target precursors of cell-wall synthesis. In this study, we showed that the BceAB transporter from the human pathogen Streptococcus pneumoniae does not confer resistance to daptomycin, suggesting that this drug and other calcium-dependent lipopeptide antibiotics have the potential to evade the action of this type of ABC transporters in other bacterial pathogens.


Assuntos
Daptomicina , Humanos , Daptomicina/farmacologia , Streptococcus pneumoniae/metabolismo , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Proteínas de Membrana Transportadoras , Lipopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Peptídeos Antimicrobianos
15.
mBio ; 15(6): e0115724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757970

RESUMO

Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc2DAG. By contrast, in cells lacking LtaA, the flippase of Glc2DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus.


Assuntos
Proteínas de Bactérias , Lipopolissacarídeos , Proteínas de Membrana , Staphylococcus aureus , Ácidos Teicoicos , Ácidos Teicoicos/biossíntese , Ácidos Teicoicos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Parede Celular/metabolismo , Membrana Celular/metabolismo
16.
iScience ; 27(4): 109505, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577105

RESUMO

Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.

17.
J Biol Chem ; 287(25): 20830-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544754

RESUMO

In Bacillus subtilis, the ribosome-associated GTPase CpgA is crucial for growth and proper morphology and was shown to be phosphorylated in vitro by the Ser/Thr protein kinase PrkC. To further understand the function of the Escherichia coli RsgA ortholog, CpgA, we first demonstrated that its GTPase activity is stimulated by its association with the 30 S ribosomal subunit. Then the role of CpgA phosphorylation was analyzed. A single phosphorylated residue, threonine 166, was identified by mass spectrometry. Phosphoablative replacement of this residue in CpgA induces a decrease of both its affinity for the 30 S ribosomal subunit and its GTPase activity, whereas a phosphomimetic replacement has opposite effects. Furthermore, cells expressing a nonphosphorylatable CpgA protein present the morphological and growth defects similar to those of a cpgA-deleted strain. Altogether, our results suggest that CpgA phosphorylation on Thr-166 could modulate its ribosome-induced GTPase activity. Given the role of PrkC in B. subtilis spore germination, we propose that CpgA phosphorylation is a key regulatory process that is essential for B. subtilis development.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , Fosforilação/fisiologia , Subunidades Ribossômicas Menores de Bactérias/genética , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética
18.
Mol Microbiol ; 83(4): 746-58, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22211696

RESUMO

Eukaryotic-like serine/threonine-kinases are involved in the regulation of a variety of physiological processes in bacteria. In Streptococcus pneumoniae, deletion of the single serine/threonine-kinase gene stkP results in an aberrant cell morphology suggesting that StkP participates in pneumococcus cell division. To understand the function of StkP, we have engineered various pneumococcus strains expressing truncated or kinase-dead forms of StkP. We show that StkP kinase activity, but also its extracellular and cytoplasmic domains per se, are required for pneumococcus cell division. Indeed, we observe that mutant cells show round or elongated shapes with non-functional septa and a chain phenotype, delocalized sites of peptidoglycan synthesis and diffused membrane StkP localization. To gain understanding of the underlying StkP-mediated regulatory mechanism, we show that StkP specifically phosphorylates in vivo the cell division protein DivIVA on threonine 201. Pneumococcus cells expressing non-phosphorylatable DivIVA-T201A possess an elongated shape with a polar bulge and aberrant spatial organization of nascent peptidoglycan. This brings the first evidence of the importance of StkP in relationship to the phosphorylation of one of its substrates in cell division. It is concluded that StkP is a multifunctional protein that plays crucial functions in pneumococcus cell shape and division.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas Serina-Treonina Quinases/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Análise Mutacional de DNA , Microscopia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/genética
19.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849218

RESUMO

Recycling of undecaprenol pyrophosphate is critical to regenerate the pool of undecaprenol monophosphate required for cell wall biosynthesis. Undecaprenol pyrophosphate is dephosphorylated by membrane-associated undecaprenyl pyrophosphate phosphatases such as UppP or type 2 Phosphatidic Acid Phosphatases (PAP2) and then transferred across the cytoplasmic membrane by Und-P flippases such as PopT (DUF368-containing protein) or UptA (a DedA family protein). While the deletion of uppP in S. pneumoniae has been reported to increase susceptibility to bacitracin and reduce infectivity in a murine infection model, the presence of PAP2 family proteins or Und-P flippases and their potential interplay with UppP in S. pneumoniae remained unknown. In this report, we identified two PAP2 family proteins and a DUF368-containing protein and investigated their roles together with that of UppP in cell growth, cell morphology and susceptibility to bacitracin in S. pneumoniae. Our results suggest that the undecaprenol monophosphate recycling pathway in S. pneumoniae could result from a functional redundancy between UppP, the PAP2-family protein Spr0434 and the DUF368-containing protein Spr0889.


Assuntos
Bacitracina , Streptococcus pneumoniae , Camundongos , Animais , Bacitracina/farmacologia , Streptococcus pneumoniae/genética , Difosfatos
20.
mBio ; 14(5): e0141123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728370

RESUMO

IMPORTANCE: Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.


Assuntos
Peptidil Transferases , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Lactamas/metabolismo , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Peptidil Transferases/genética , Peptidil Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA