Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 53(1): 91, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875996

RESUMO

BACKGROUND: The possibility of using antibody response (S/P ratio) to PRRSV vaccination measured in crossbred commercial gilts as a genetic indicator for reproductive performance in vaccinated crossbred sows has motivated further studies of the genomic basis of this trait. In this study, we investigated the association of haplotypes and runs of homozygosity (ROH) and heterozygosity (ROHet) with S/P ratio and their impact on reproductive performance. RESULTS: There was no association (P-value ≥ 0.18) of S/P ratio with the percentage of ROH or ROHet, or with the percentage of heterozygosity across the whole genome or in the major histocompatibility complex (MHC) region. However, specific ROH and ROHet regions were significantly associated (P-value ≤ 0.01) with S/P ratio on chromosomes 1, 4, 5, 7, 10, 11, 13, and 17 but not (P-value ≥ 0.10) with reproductive performance. With the haplotype-based genome-wide association study (GWAS), additional genomic regions associated with S/P ratio were identified on chromosomes 4, 7, and 9. These regions harbor immune-related genes, such as SLA-DOB, TAP2, TAPBP, TMIGD3, and ADORA. Four haplotypes at the identified region on chromosome 7 were also associated with multiple reproductive traits. A haplotype significantly associated with S/P ratio that is located in the MHC region may be in stronger linkage disequilibrium (LD) with the quantitative trait loci (QTL) than the previously identified single nucleotide polymorphism (SNP) (H3GA0020505) given the larger estimate of genetic variance explained by the haplotype than by the SNP. CONCLUSIONS: Specific ROH and ROHet regions were significantly associated with S/P ratio. The haplotype-based GWAS identified novel QTL for S/P ratio on chromosomes 4, 7, and 9 and confirmed the presence of at least one QTL in the MHC region. The chromosome 7 region was also associated with reproductive performance. These results narrow the search for causal genes in this region and suggest SLA-DOB and TAP2 as potential candidate genes associated with S/P ratio on chromosome 7. These results provide additional opportunities for marker-assisted selection and genomic selection for S/P ratio as genetic indicator for litter size in commercial pig populations.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Formação de Anticorpos , Feminino , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Locos de Características Quantitativas , Sus scrofa/genética , Suínos/genética , Vacinação
2.
J Anim Breed Genet ; 137(1): 84-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31762123

RESUMO

Our objectives were to evaluate the interaction between host genetics and vaginal microbiota and their relationships with antibody (Ab) response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and farrowing performance in commercial gilts. The farrowing performance traits were number born alive, number weaning (NW), total number born, number born dead, stillborn, mummies and preweaning mortality (PWM). The vaginal microbiota was collected on days 4 (D4) and 52 (D52) after vaccination for PRRSV. Blood samples were collected on D52 for Ab measurement. Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Tenericutes were the most abundant Phyla identified in the vaginal microbiota. Heritability ranged from ~0 to 0.60 (Fusobacterium) on D4 and from ~0 to 0.63 (Terrisporobacter) on D52, with 43 operational taxonomic units (OTUs) presenting moderate to high heritability. One major QTL on chromosome 12 was identified for 5 OTUs (Clostridiales, Acinetobacter, Ruminococcaceae, Campylobacter and Anaerococcus), among other 19 QTL. The microbiability for Ab response to PRRSV vaccination was low for both days (<0.07). For farrowing performance, microbiability varied from <0.001 to 0.15 (NW on D4). For NW and PWM, the microbiability was greater than the heritability estimates. Actinobacillus, Streptococcus, Campylobacter, Anaerococcus, Mollicutes, Peptostreptococcus, Treponema and Fusobacterium showed different abundance between low and high Ab responders. Finally, canonical discriminant analyses revealed that vaginal microbiota was able to classify gilts in high and low Ab responders to PRRSV vaccination with a misclassification rate of <0.02. Although the microbiota explained limited variation in Ab response and farrowing performance traits, there is still potential to explore the use of vaginal microbiota to explain variation in traits such as NW and PWM. In addition, these results revealed that there is a partial control of host genetic over vaginal microbiota, suggesting a possibility for genetic selection on the vaginal microbiota.


Assuntos
Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Microbiota , Sus scrofa/genética , Sus scrofa/imunologia , Vagina/microbiologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Microbiota/imunologia , Fenótipo , Sus scrofa/microbiologia , Sus scrofa/virologia , Vacinação
3.
Genet Sel Evol ; 48(1): 91, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27884108

RESUMO

BACKGROUND: In nucleus populations, regions of the genome that have a high frequency of runs of homozygosity (ROH) occur and are associated with a reduction in genetic diversity, as well as adverse effects on fitness. It is currently unclear whether, and to what extent, ROH stretches persist in the crossbred genome and how genomic management in the nucleus population might impact low diversity regions and its implications on the crossbred genome. METHODS: We calculated a ROH statistic based on lengths of 5 (ROH5) or 10 (ROH10) Mb across the genome for genotyped Landrace (LA), Large White (LW) and Duroc (DU) dams. We simulated crossbred dam (LA × LW) and market [DU × (LA × LW)] animal genotypes based on observed parental genotypes and the ROH frequency was tabulated. We conducted a simulation using observed genotypes to determine the impact of minimizing parental relationships on multiple diversity metrics within nucleus herds, i.e. pedigree-(A), SNP-by-SNP relationship matrix or ROH relationship matrix. Genome-wide metrics included, pedigree inbreeding, heterozygosity and proportion of the genome in ROH of at least 5 Mb. Lastly, the genome was split into bins of increasing ROH5 frequency and, within each bin, heterozygosity, ROH5 and length (Mb) of ROH were evaluated. RESULTS: We detected regions showing high frequencies of either ROH5 and/or ROH10 across both LW and LA on SSC1, SSC4, and SSC14, and across all breeds on SSC9. Long haplotypes were shared across parental breeds and thus, regions of ROH persisted in crossbred animals. Averaged across replicates and breeds, progeny had higher levels of heterozygosity (0.0056 ± 0.002%) and lower proportion of the genome in a ROH of at least 5 Mb (-0.015 ± 0.003%) than their parental genomes when genomic relationships were constrained, while pedigree relationships resulted in negligible differences at the genomic level. Across all breeds, only genomic data was able to target low diversity regions. CONCLUSIONS: We show that long stretches of ROH present in the parents persist in crossbred animals. Furthermore, compared to using pedigree relationships, using genomic information to constrain parental relationships resulted in maintaining more genetic diversity and more effectively targeted low diversity regions.


Assuntos
Cruzamento/métodos , Genoma , Homozigoto , Vigor Híbrido , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Simulação por Computador , Cruzamentos Genéticos , Feminino , Genótipo , Heterozigoto , Padrões de Herança , Desequilíbrio de Ligação , Masculino , Linhagem , Suínos
4.
BMC Genet ; 16: 59, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26024912

RESUMO

BACKGROUND: Feed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth. RESULTS: Corrected daily feed intake (DFI Adj) and average daily weight measurements (DBW Avg) on 8981 (n=525,240 observations) and 5643 (n=283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order=2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n=855; DBWAvg: n=590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n=1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P<0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01% for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95% for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior. CONCLUSIONS: We have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Peso Corporal , Ingestão de Alimentos , Estudos de Associação Genética , Suínos
5.
Animals (Basel) ; 13(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570209

RESUMO

The objective was to evaluate the genetics of sow teat and mammary traits at farrowing and at weaning. Data were recorded on 3099 Landrace × Large White F1 sows. Underline traits included the total teat number (TT), the functional teat number (FT), the non-functional teat number (NFT), the damaged teat number (DT), and the number of functional mammary glands (FMG). Variance components were estimated using AIREMLF90. Means for TT, FT, and NFT at farrowing were 14.93, 13.90, and 1.03, respectively. Heritability estimates for TT, FT, and NFT ranged from 0.18 to 0.37, 0.16 to 0.28, and 0.14 to 0.18, respectively. Estimates of heritability for DT and FMG at weaning were 0.03 and 0.06, respectively. Estimated genetic correlations between FT with TT and NFT were 0.68 to 0.78 and -0.19 to -0.57, respectively. Genetic correlation estimates between TT, FT, and NFT with the number weaned were 0.25, 0.50, and -0.38, respectively. An increase of one TT and FT enhanced (p < 0.05) the number weaned by 0.14 to 0.16 and 0.18 to 0.27 piglets, respectively. The results suggest that genetically increasing the number of functional teats on a sow at farrowing would improve the number of piglets at weaning.

6.
Transl Anim Sci ; 7(1): txad100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662897

RESUMO

The objective was to evaluate the impact of functional teat number on reproductive throughput in swine. Data included 735 multiparous Landrace × Large White F1 females. Sow underlined traits consisted of total teat number (TT), functional teat number (FT), nonfunctional teat number (NFT), and number of functional mammary glands (FMG). Weaning traits were calculated for both the biological and the nurse dam. For the biological dam, litter size at weaning (LSW) included a sow's biological piglets regardless of cross-fostering. For nurse dam, number weaned (NW) included the piglets a sow weaned. For the biological dam, piglet survival (PS) was calculated as litter size at weaning / (total number born × 100). Linear regression estimates were calculated in RStudio v. 1.1.456 and variance components were estimated using GIBBS3F90. Average total number born, number born alive, TT, FT, NFT, and FMG were 14.22, 13.12, 14.43, 13.96, 0.42, and 10.7, respectively. An increase in one FT enhanced (P < 0.05) LSW by 0.32 piglets and NW by 0.33 piglets. Similarly, an increase in one FT improved (P < 0.05) PS by 1.63% and reduced (P < 0.05) preweaning mortality by 2.73%. However, an increase in one FT reduced (P < 0.05) average piglet weaning weight (WW) for biological and nurse dams by 35 and 94 g, respectively. Yet an increase in one FT enhanced (P < 0.05) litter weaning weight (LWW) for biological and nurse dams by 1.3 and 1.5 kg, respectively. Heritability estimates for TT, FT, NFT, FMG, WW, LWW, LSW, and PS were 0.25, 0.22, 0.53, 0.18, 0.21, 0.22, 0.16, and 0.18, respectively. Genetic correlation estimates between FT with TT, NFT, and FMG were 0.79, 0.09, and 0.28, respectively. Estimated genetic correlations between TT with WW, LWW, LSW, and PS were 0.37, 0.38, 0.11, and -0.19, respectively. Genetic correlation estimates between FT with WW, LWW, LSW, and PS were 0.44, 0.49, 0.39, and 0.35, respectively. Results suggest increasing functional teat number would enhance both piglet survival and reproductive throughput.

7.
Genet Sel Evol ; 44: 24, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22846230

RESUMO

BACKGROUND: Milkability, primarily evaluated by measurements of milking speed and time, has an economic impact in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic information were compared with those obtained from traditional breeding values. METHODS: Milk flow measures for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped sires (n = 1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare accuracies obtained from parental averages with genome-enhanced predictions. RESULTS: Genome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values ranging from 0.34 to 0.49 for the different traits. Across two-stage methods, the average increase in reliability from parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow, respectively. CONCLUSIONS: Using genomic models increased the accuracy of prediction compared to traditional BLUP methods. Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step method was the most successful at increasing the reliability for most traits. The single-step method takes advantage of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into current breeding evaluations.


Assuntos
Bovinos/genética , Genoma , Lactação/genética , Característica Quantitativa Herdável , Análise de Variância , Animais , Teorema de Bayes , Cruzamento , Indústria de Laticínios , Feminino , Masculino , Modelos Estatísticos , População/genética , Seleção Genética
8.
BMC Vet Res ; 8: 199, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23092401

RESUMO

BACKGROUND: Milkability is a complex trait that is characterized by milk flow traits including average milk flow rate, maximum milk flow rate and total milking time. Milkability has long been recognized as an economically important trait that can be improved through selection. By improving milkability, management costs of milking decrease through reduced labor and improved efficiency of the automatic milking system, which has been identified as an important factor affecting net profit. The objective of this study was to identify markers associated with electronically measured milk flow traits, in the Italian Brown Swiss population that could potentially improve selection based on genomic predictions. RESULTS: Sires (n = 1351) of cows with milk flow information were genotyped for 33,074 single nucleotide polymorphism (SNP) markers distributed across 29 Bos taurus autosomes (BTA). Among the six milk flow traits collected, ascending time, time of plateau, descending time, total milking time, maximum milk flow and average milk flow, there were 6,929 (time of plateau) to 14,585 (maximum milk flow) significant SNP markers identified for each trait across all BTA. Unique regions were found for each of the 6 traits providing evidence that each individual milk flow trait offers distinct genetic information about milk flow. This study was also successful in identifying functional processes and genes associated with SNPs that influences milk flow. CONCLUSIONS: In addition to verifying the presence of previously identified milking speed quantitative trait loci (QTL) within the Italian Brown Swiss population, this study revealed a number of genomic regions associated with milk flow traits that have never been reported as milking speed QTL. While several of these regions were not associated with a known gene or QTL, a number of regions were associated with QTL that have been formerly reported as regions associated with somatic cell count, somatic cell score and udder morphometrics. This provides further evidence of the complexity of milk flow traits and the underlying relationship it has with other economically important traits for dairy cattle. Improved understanding of the overall milking pattern will aid in identification of cows with lower management costs and improved udder health.


Assuntos
Bovinos/fisiologia , Regulação da Expressão Gênica/fisiologia , Lactação/fisiologia , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Bovinos/genética , Indústria de Laticínios , Feminino , Marcadores Genéticos , Itália , Lactação/genética
9.
Front Genet ; 12: 707870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422010

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) is historically the most economically important swine disease worldwide that severely affects the reproductive performance of sows. However, little is still known about the genetic basis of reproductive performance in purebred herds during a PRRS outbreak through the comparison of maternal and terminal breeds. Thus, the objective of this work was to explore the host genetics of response to PRRS in purebred sows from two breeds. Reproductive data included 2546 Duroc and 2522 Landrace litters from 894 and 813 purebred sows, respectively, which had high-density genotype data available (29,799 single nucleotide polymorphisms; SNPs). The data were split into pre-PRRS, PRRS, and post-PRRS phases based on standardized farrow-year-week estimates. Heritability estimates for reproductive traits were low to moderate (≤0.20) for Duroc and Landrace across PRRS phases. On the other hand, genetic correlations of reproductive traits between PRRS phases were overall moderate to high for both breeds. Several associations between MARC0034894, a candidate SNP for response to PRRS, with reproductive performance were identified (P-value < 0.05). Genomic analyses detected few QTL for reproductive performance across all phases, most explaining a small percentage of the additive genetic variance (≤8.2%, averaging 2.1%), indicating that these traits are highly polygenic. None of the identified QTL within a breed and trait overlapped between PRRS phases. Overall, our results indicate that Duroc sows are phenotypically more resilient to PRRS than Landrace sows, with a similar return to PRRS-free performance between breeds for most reproductive traits. Genomic prediction results indicate that genomic selection for improved reproductive performance under a PRRS outbreak is possible, especially in Landrace sows, by training markers using data from PRRS-challenged sows. On the other hand, the high genetic correlations with reproductive traits between PRRS phases suggest that selection for improved reproductive performance in a clean environment could improve performance during PRRS, but with limited efficiency due to their low heritability estimates. Thus, we hypothesize that an indicator trait that could be indirectly selected to increase the response to selection for these traits would be desirable and would also improve the reproductive performance of sows during a PRRS outbreak.

10.
Front Genet ; 12: 707873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422011

RESUMO

Antibody response to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infection, measured as sample-to-positive (S/P) ratio, has been proposed as an indicator trait for improved reproductive performance during a PRRS outbreak in Landrace sows. However, this result has not yet been validated in Landrace sows or evaluated in terminal sire lines. The main objectives of this work were to validate the use of S/P ratio as an indicator trait to select pigs during a PRRS outbreak and to explore the genetic basis of antibody response to PRRSV. Farrowing data included 2,546 and 2,522 litters from 894 Duroc and 813 Landrace sows, respectively, split into pre-PRRS, PRRS, and post-PRRS phases. Blood samples were taken from 1,231 purebred sows (541 Landrace and 690 Duroc) following a PRRS outbreak for subsequent PRRSV ELISA analysis for S/P ratio measurement. All animals had high-density genotype data available (29,799 single nucleotide polymorphisms; SNPs). Genetic parameters and genome-wide association studies (GWAS) for S/P ratio were performed for each breed separately. Heritability estimates (± standard error) of S/P ratio during the PRRS outbreak were moderate, with 0.35 ± 0.08 for Duroc and 0.34 ± 0.09 for Landrace. During the PRRS outbreak, favorable genetic correlations of S/P ratio with the number of piglets born alive (0.61 ± 0.34), number of piglets born dead (-0.33 ± 0.32), and number of stillborn piglets (-0.27 ± 0.31) were observed for Landrace sows. For Duroc, the GWAS identified a major quantitative trait locus (QTL) on chromosome (Chr) 7 (24-15 megabases; Mb) explaining 15% of the total genetic variance accounted for by markers (TGVM), and another one on Chr 8 (25 Mb) explaining 2.4% of TGVM. For Landrace, QTL on Chr 7 (24-25 Mb) and Chr 7 (108-109 Mb), explaining 31% and 2.2% of TGVM, respectively, were identified. Some of the SNPs identified in these regions for S/P ratio were associated with reproductive performance but not during the PRRS outbreak. Genomic prediction accuracies for S/P ratio were moderate to high for the within-breed analysis. For the between-breed analysis, these were overall low. These results further support the use of S/P ratio as an indicator trait for improved reproductive performance during a PRRS outbreak in Landrace sows.

11.
J Anim Sci ; 99(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33782709

RESUMO

Antibody response, measured as sample-to-positive (S/P) ratio, to porcine reproductive and respiratory syndrome virus (PRRSV) following a PRRSV-outbreak (S/POutbreak) in a purebred nucleus and following a PRRSV-vaccination (S/PVx) in commercial crossbred herds have been proposed as genetic indicator traits for improved reproductive performance in PRRSV-infected purebred and PRRSV-vaccinated crossbred sows, respectively. In this study, we investigated the genetic relationships of S/POutbreak and S/PVx with performance at the commercial (vaccinated crossbred sows) and nucleus level (non-infected and PRRSV-infected purebred sows), respectively, and tested the effect of previously identified SNP for these indicator traits. Antibody response was measured on 541 Landrace sows ~54 d after the start of a PRRSV outbreak, and on 906 F1 (Landrace × Large White) gilts ~50 d after vaccination with a commercial PRRSV vaccine. Reproductive performance was recorded for 711 and 428 Landrace sows before and during the PRRSV outbreak, respectively, and for 811 vaccinated F1 animals. The estimate of the genetic correlation (rg) of S/POutbreak with S/PVx was 0.72 ± 0.18. The estimates of rg of S/POutbreak with reproductive performance in vaccinated crossbred sows were low to moderate, ranging from 0.05 ± 0.23 to 0.30 ± 0.20. The estimate of rg of S/PVx with reproductive performance in non-infected purebred sows was moderate and favorable with number born alive (0.50 ± 0.23) but low (0 ± 0.23 to -0.11 ± 0.23) with piglet mortality traits. The estimates of rg of S/PVx were moderate and negative (-0.38 ± 0.21) with number of mummies in PRRSV-infected purebred sows and low with other traits (-0.30 ± 0.18 to 0.05 ± 0.18). Several significant associations (P0 > 0.90) of previously reported SNP for S/P ratio (ASGA0032063 and H3GA0020505) were identified for S/P ratio and performance in non-infected purebred and PRRSV-exposed purebred and crossbred sows. Genomic regions harboring the major histocompatibility complex class II region significantly contributed to the genetic correlation of antibody response to PRRSV with most of the traits analyzed. These results indicate that selection for antibody response in purebred sows following a PRRSV outbreak in the nucleus and for antibody response to PRRSV vaccination measured in commercial crossbred sows are expected to increase litter size in purebred and commercial sows.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Formação de Anticorpos , Feminino , Genômica , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Gravidez , Suínos , Vacinação/veterinária
12.
Microbiome ; 8(1): 110, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698902

RESUMO

BACKGROUND: Feed efficiency is a crucial parameter in swine production, given both its economic and environmental impact. The gut microbiota plays an essential role in nutrient digestibility and is, therefore, likely to affect feed efficiency. This study aimed to characterize feed efficiency, fatness traits, and gut microbiome composition in three major breeds of domesticated swine and investigate a possible link between feed efficiency and gut microbiota composition. RESULTS: Average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR), residual feed intake (RFI), backfat, loin depth, and intramuscular fat of 615 pigs belonging to the Duroc (DR), Landrace (LR), and Large White (LW) breeds were measured. Gut microbiota composition was characterized by 16S rRNA gene sequencing. Orthogonal contrasts between paternal line (DR) and maternal lines (LR+LW) and between the two maternal lines (LR versus LW) were performed. Average daily feed intake and ADG were statistically different with DR having lower ADFI and ADG compared to LR and LW. Landrace and LW had a similar ADG and RFI, with higher ADFI and FCR for LW. Alpha diversity was higher in the fecal microbial communities of LR pigs than in those of DR and LW pigs for all time points considered. Duroc communities had significantly higher proportional representation of the Catenibacterium and Clostridium genera compared to LR and LW, while LR pigs had significantly higher proportions of Bacteroides than LW for all time points considered. Amplicon sequence variants from multiple genera (including Anaerovibrio, Bacteroides, Blautia, Clostridium, Dorea, Eubacterium, Faecalibacterium, Lactobacillus, Oscillibacter, and Ruminococcus) were found to be significantly associated with feed efficiency, regardless of the time point considered. CONCLUSIONS: In this study, we characterized differences in the composition of the fecal microbiota of three commercially relevant breeds of swine, both over time and between breeds. Correlations between different microbiome compositions and feed efficiency were established. This suggests that the microbial community may contribute to shaping host productive parameters. Moreover, our study provides important insights into how the intestinal microbial community might influence host energy harvesting capacity. A deeper understanding of this process may allow us to modulate the gut microbiome in order to raise more efficient animals. Video Abstract.


Assuntos
Ração Animal , Microbioma Gastrointestinal , Intestinos/microbiologia , Suínos/classificação , Suínos/microbiologia , Animais , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Masculino , RNA Ribossômico 16S/genética , Aumento de Peso
13.
J Anim Sci ; 98(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999338

RESUMO

Genomic selection increases accuracy and decreases generation interval, speeding up genetic changes in the populations. However, intensive changes caused by selection can reduce the genetic variation and can strengthen undesirable genetic correlations. The purpose of this study was to investigate changes in genetic parameters for fitness traits related with prolificacy (FT1) and litter survival (FT2 and FT3), and for growth (GT1 and GT2) traits in pigs over time. The data set contained 21,269 (FT1), 23,246 (FT2), 23,246 (FT3), 150,492 (GT1), and 150,493 (GT2) phenotypic records obtained from 2009 to 2018. The pedigree file included 369,776 animals born between 2001 and 2018, of which 39,103 were genotyped. Genetic parameters were estimated with bivariate models (FT1-GT1, FT1-GT2, FT2-GT1, FT2-GT2, FT3-GT1, and FT3-GT2) using 3-yr sliding subsets. With a Bayesian implementation using the GIBBS3F90 program computations were performed as genomic analysis (GEN) or pedigree-based analysis (PED), that is, with or without genotypes, respectively. For GEN (PED), the changes in heritability from the first to the last year interval, that is, from 2009-2011 to 2015-2018 were 8.6 to 5.6 (7.9 to 8.8) for FT1, 7.8 to 7.2 (7.7 to 10.8) for FT2, 11.4 to 7.6 (10.1 to 7.5) for FT3, 35.1 to 16.5 (32.5 to 23.7) for GT1, and 35.9 to 16.5 (32.6 to 24.1) for GT2. Differences were also observed for genetic correlations as they changed from -0.31 to -0.58 (-0.28 to -0.73) for FT1-GT1, -0.32 to -0.50 (-0.29 to -0.74) for FT1-GT2, -0.27 to -0.45 (-0.30 to -0.65) for FT2-GT1, -0.28 to -0.45 (-0.32 to -0.66) for FT2-GT2, 0.14 to 0.17 (0.11 to 0.04) for FT3-GT1, and 0.14 to 0.18 (0.11 to 0.05) for FT3-GT2. Strong selection in pigs reduced heritabilities and emphasized the antagonistic genetic relationships between fitness and growth traits. With genotypes considered, heritability estimates were smaller and genetic correlations were greater than estimates with only pedigree and phenotypes. When selection is based on genomic information, genetic parameters estimated without this information can be biased because preselection is not accounted for by the model.


Assuntos
Genoma/genética , Suínos/genética , Animais , Teorema de Bayes , Feminino , Genótipo , Masculino , Linhagem , Fenótipo , Seleção Genética , Software , Suínos/crescimento & desenvolvimento , Suínos/fisiologia
14.
Front Genet ; 11: 1011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024439

RESUMO

We proposed to investigate the genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) vaccination and its relationship to reproductive performance in non-PRRSV-infected commercial sows. Nine hundred and six F1 replacement gilts (139 ± 17 days old) from two commercial farms were vaccinated with a commercial modified live PRRSV vaccine. Blood samples were collected about 52 days after vaccination to measure antibody response to PRRSV as sample-to-positive (S/P) ratio and for single-nucleotide polymorphism (SNP) genotyping. Reproductive performance was recorded for up to 807 sows for number born alive (NBA), number of piglets weaned, number born mummified (MUM), number of stillborn (NSB), and number of pre-weaning mortality (PWM) at parities (P) 1-3 and per sow per year (PSY). Fertility traits such as farrowing rate and age at first service were also analyzed. BayesC0 was used to estimate heritability and genetic correlations of S/P ratio with reproductive performance. Genome-wide association study (GWAS) and genomic prediction were performed using BayesB. The heritability estimate of S/P ratio was 0.34 ± 0.05. High genetic correlations (r g) of S/P ratio with farrowing performance were identified for NBA P1 (0.61), PWM P2 (-0.70), NSB P3 (-0.83), MUM P3 (-0.84), and NSB PSY (-0.90), indicating that genetic selection for increased S/P ratio would result in improved performance of these traits. A quantitative trait locus was identified on chromosome 7 (∼25 Mb), at the major histocompatibility complex (MHC) region, explaining ∼30% of the genetic variance for S/P ratio, mainly by SNPs ASGA0032113, H3GA0020505, and M1GA0009777. This same region was identified in the bivariate GWAS of S/P ratio and reproductive traits, with SNP H3GA0020505 explaining up to 10% (for NBA P1) of the genetic variance of reproductive performance. The heterozygote genotype at H3GA0020505 was associated with greater S/P ratio and NBA P1 (P = 0.06), and lower MUM P3 and NSB P3 (P = 0.07). Genomic prediction accuracy for S/P ratio was high when using all SNPs (0.67) and when using only those in the MHC region (0.59) and moderate to low when using all SNPs excluding those in the MHC region (0.39). These results suggest that there is great potential to use antibody response to PRRSV vaccination as an indicator trait to improve reproductive performance in commercial pigs.

15.
J Anim Sci Biotechnol ; 10: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867904

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most infectious swine diseases in the world, resulting in over 600 million dollars of economic loss in the USA alone. More recently, the USA swine industry has been having additional major economic losses due to the spread of porcine epidemic diarrhea (PED). However, information regarding the amount of genetic variation for response to diseases in reproductive sows is still very limited. The objectives of this study were to identify periods of infection with of PRRS virus (PRRSV) and/or PED virus (PEDV), and to estimate the impact their impact on the phenotypic and genetic reproductive performance of commercial sows. RESULTS: Disease (PRRS or PED) was significant (P < 0.05) for all traits analyzed except for total piglets born. Heritability estimates for traits during Clean (without any disease), PRRS, and PED ranged from 0.01 (number of mummies; Clean and PED) to 0.41 (abortion; PED). Genetic correlations between traits within disease statuses ranged from -0.99 (proportion born dead with number weaned; PRRS) to 0.99 (number born dead with born alive; Clean). Within trait, between disease statuses, estimates ranged from - 0.17 (number weaned between PRRS and PED) to 0.99 (abortion between Clean and PRRS). CONCLUSION: Results indicate that selection for improved performance during PRRS and PED in commercial sows is possible and would not negatively impact performance in Clean environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA