RESUMO
Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.
Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de TempoRESUMO
Mercury (Hg) is a global pollutant released from both natural and human sources. Here we compare long-term records of wet deposition loadings of total Hg (THg) in the open to dry deposition loadings of THg in throughfall and litterfall under four boreal mixedwood canopy types at the remote Experimental Lakes Area (ELA) in Northwestern Ontario, Canada. We also present long-term records of atmospheric concentrations of gaseous elemental (GEM), gaseous oxidized (GOM), and particle bound (PBM) Hg measured at the ELA. We show that dry THg loadings in throughfall and litterfall are 2.7 to 6.1 times greater than wet THg loadings in the open. GEM concentrations showed distinct monthly and daily patterns, correlating positively in spring and summer with rates of gross ecosystem productivity and respiration. GOM and PBM concentrations were less variable throughout the year but were highest in the winter, when concentrations of anthropogenically sourced particles and gases were also high. Forest fires, Arctic air masses, and road salt also impacted GEM, GOM, and PBM concentrations at the ELA. A nested GEOS-Chem simulation for the ELA region produced a dry/wet deposition ratio of >5, suggesting that the importance of dry deposition in forested regions can be reasonably modeled by existing schemes for trace gases.
Assuntos
Poluentes Atmosféricos , Mercúrio , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , OntárioRESUMO
Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Canadá , Ecossistema , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Óleo de Brassica napusRESUMO
The Flin Flon, Manitoba copper smelter was Canada's largest point source of mercury emissions until its closure in 2010 after ~80 years of operation. The objective of this study was to understand the variables controlling the local ground-level air mercury concentrations before and after this major point source reduction. Total gaseous mercury (TGM) in air, mercury in precipitation, and other ancillary meteorological and air quality parameters were measured pre- and postsmelter closure, and mercury speciation measurements in air were collected postclosure. The results showed that TGM was significantly elevated during the time period when the smelter operated (4.1 ± 3.7 ng m(-3)), decreased only 20% during the year following its closure, and remained ~2-fold above background levels. Similar trends were observed for mercury concentrations in precipitation. Several lines of evidence indicated that while smelter stack emissions would occasionally mix down to the surface resulting in large spikes in TGM concentrations (up to 61 ng m(-3)), the largest contributor to elevated TGM concentrations before and after smelter closure was from surface-air fluxes from mercury-enriched soils and/or tailings. These findings highlight the ability of legacy mercury, deposited to local landscapes over decades from industrial activities, to significantly affect local air concentrations via emissions/re-emissions.
Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Cobre , Monitoramento Ambiental , Manitoba , Metalurgia , Material Particulado/análise , Dióxido de Enxofre/análiseRESUMO
Circumpolar rivers, including the Mackenzie River in Canada, are sources of the contaminant mercury (Hg) to the Arctic Ocean, but few Hg export studies exist for these rivers. During the 2007-2010 freshet and open water seasons, we collected river water upstream and downstream of the Mackenzie River delta to quantify total mercury (THg) and methylmercury (MeHg) concentrations and export. Upstream of the delta, flow-weighted mean concentrations of bulk THg and MeHg were 14.6 ± 6.2 ng L(-1) and 0.081 ± 0.045 ng L(-1), respectively. Only 11-13% and 44-51% of bulk THg and MeHg export was in the dissolved form. Using concentration-discharge relationships, we calculated bulk THg and MeHg export into the delta of 2300-4200 kg yr(-1) and 15-23 kg yr(-1) over the course of the study. Discharge is not presently known in channels exiting the delta, so we assessed differences in river Hg concentrations upstream and downstream of the delta to estimate its influence on Hg export to the ocean. Bulk THg and MeHg concentrations decreased 19% and 11% through the delta, likely because of particle settling and other processes in the floodplain. These results suggest that northern deltas may be important accumulators of river Hg in their floodplains before export to the Arctic Ocean.
Assuntos
Mercúrio/química , Poluentes Químicos da Água/química , Alberta , Regiões Árticas , RiosRESUMO
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
RESUMO
The Alberta Biomonitoring Program (ABP) was created in 2005 with the initial goal of establishing baseline levels of exposure to environmental chemicals in specific populations in the province of Alberta, Canada, and was later expanded to include multiple phases. The first two phases focused on evaluating exposure in pregnant women (Phase One, 2005) and children (Phase Two, 2004-2006) by analyzing residual serum specimens. Phase Three (2013-2016) employed active recruitment techniques to evaluate environmental exposures using a revised list of chemicals in paired serum pools from pregnant women and umbilical cord blood. These three phases of the program monitored a total of 226 chemicals in 285 pooled serum samples representing 31,529 individuals. Phase Four (2017-2020) of the ABP has taken a more targeted approach, focusing on the impact of the federal legalization of cannabis on the exposure of pregnant women in Alberta to cannabis, as well as tobacco and alcohol using residual prenatal screening serum specimens. Chemicals monitored in the first three phases include herbicides, neutral pesticides, metals, metalloids, and micronutrients, methylmercury, organochlorine pesticides, organophosphate pesticides, parabens, phthalate metabolites, perfluoroalkyl substances (PFAS), phenols, phytoestrogens, polybrominated compounds, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and tobacco biomarkers. Phase Four monitored six biomarkers of tobacco, alcohol, and cannabis. All serum samples were pooled. Mean concentrations and 95% confidence intervals (CIs) were calculated for the chemicals detected in ≥25% of the sample pools. cross the first three phases, the data from the ABP has provided baseline exposure levels for the chemicals in pregnant women, children, and newborns across the province. Comparison within and among the phases has highlighted differences in exposure levels with age, geography, seasonality, sample type, and time. The strategies employed throughout the program phases have been demonstrated to provide effective models for population biomonitoring.
Assuntos
Poluentes Ambientais , Praguicidas , Bifenilos Policlorados , Alberta , Monitoramento Biológico , Biomarcadores , Criança , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Exposição Materna , GravidezRESUMO
Although it has been previously shown that forest canopies significantly increase the total deposition of Hg to watersheds, sources and fates of atmospherically deposited MeHg in particular remain poorly understood. In this study, net loadings of MeHg to a watershed were quantified, and the retention and (photo)reduction of MeHg on foliage were measured using unique stable Hg isotope experiments. Annual loadings of MeHg in throughfall (0.34 ± 0.01 to 0.60 ± 0.16 mg ha⻹ yr⻹) and litterfall (0.77 ± 0.07 to 0.97 ± 0.34 mg ha⻹ yr⻹) were collectively 3-4 times higher under different forest canopies than loadings of MeHg in the open (0.41 mg ha⻹ yr⻹), suggesting dry deposition of MeHg to forest canopies. Using Me¹99Hg, we found that a portion of MeHg wet deposited to forest canopies is retained on foliage over time, eventually contributing to MeHg in litterfall. Average half-lives (t½) of Me¹99Hg on spruce, jack pine, and birch foliage were 204 ± 66, 187 ± 101, and 8 ± 3 days, respectively. We also found using Me¹99Hg that following wet deposition, MeHg is rapidly (photo)reduced to ¹99Hg(0) on canopy foliage, which then evades to the atmosphere. We were unable to quantify concentrations of particulate-bound MeHg (p-MeHg) in the air using vacuum pumps and quartz microfiber air sampling filters, despite the possibility that p-MeHg does exist in small quantities. As a result, the source of dry deposited MeHg remains partially elusive.
Assuntos
Ecossistema , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/química , Sedimentos Geológicos/química , Meia-Vida , Cinética , Luz , Oxirredução/efeitos da radiação , Folhas de Planta/efeitos da radiação , Chuva , Árvores/efeitos da radiaçãoRESUMO
Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 µg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 µg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are â¼ 4.7 and â¼ 4.0 trophic levels long, whereas in WHB they are only â¼ 3.6 and â¼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for â¼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western coast of HB.
Assuntos
Poluentes Ambientais/farmacocinética , Cabelo/química , Mercúrio/farmacocinética , Ursidae/metabolismo , Animais , Regiões Árticas , Canadá , Isótopos de Carbono/análise , Poluentes Ambientais/análise , Fluorescência , Cadeia Alimentar , Geografia , Espectrometria de Massas , Mercúrio/análise , Isótopos de Nitrogênio/análiseRESUMO
Trace elements can accumulate in aquatic food webs, becoming potentially hazardous to wildlife and human health. Whereas many studies have examined mercury dynamics in freshwater environments, evidence for the bioaccumulative potential of other trace elements (e.g., arsenic) is conflicting. Trace element concentrations found in surface water of the Red Deer River, Alberta, Canada, have raised concern for potential accumulation in aquatic biota. We investigated fish from this river to better understand the influence of biological and environmental factors in trace element bioaccumulation. We analyzed 20 trace elements, and stable nitrogen (δ15 N) and carbon (δ13 C) isotopes, in the muscle tissue of 8 species. Zinc, selenium, arsenic, chromium, and nickel were detected in the majority of fish at low concentrations. However, mercury was detected in all fish and often exceeded criteria for the protection of consumers. Body size was often positively correlated with trace element concentrations. In addition, δ15 N and δ13 C were correlated to mercury and arsenic concentrations, indicating that mercury biomagnifies whereas arsenic biodiminishes. Spatial patterns of fish trace element concentrations did not reflect differences in surface water concentrations. These findings indicate that fish trace element concentrations are primarily moderated by biological factors, such as trophic position and body size, and are not locally restricted to areas of relatively high environmental concentrations in the Red Deer River. Environ Toxicol Chem 2021;40:422-434. © 2020 SETAC.
Assuntos
Cervos , Mercúrio , Oligoelementos , Poluentes Químicos da Água , Alberta , Animais , Fatores Biológicos , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Mercúrio/análise , Oligoelementos/análise , Poluentes Químicos da Água/análiseRESUMO
Bioaccumulation of mercury in freshwater fish is a complex process driven by environmental and biological factors. In this study, we assessed mercury in fish from four tributaries to the Red Deer River, Alberta, Canada, which are characterized by high surface water mercury concentrations. We used carbon (δ13C) and nitrogen (δ15N) stable isotopes to examine relationships between fish total mercury (THg) concentrations, food web dynamics and patterns in unfiltered THg and methylmercury (MeHg) concentrations. We found that THg concentrations exceeded the tissue residue quality guideline for the protection of wildlife consumers in 99.7% of fish sampled. However, while the surface water THg concentration was highest in Michichi Creek and the MeHg concentration was consistent across streams, patterns of fish THg concentrations varied depending on species. Furthermore, body size and trophic level were only correlated with THg concentrations in white sucker (Catostomus commersoni) and Prussian carp (Carrasius gibelio). The results of this study suggest that mercury poses a risk to the health of piscivorous wildlife in the Red Deer River watershed. Despite high THg concentrations in these streams, mercury bioaccumulation is not driven by environmental inorganic mercury concentrations. Additionally, commonly cited factors associated with mercury concentrations in fish, such as body size and trophic level, may not strongly influence bioaccumulation in these stream ecosystems.
Assuntos
Bioacumulação , Monitoramento Ambiental/métodos , Peixes/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Alberta , Animais , Cadeia Alimentar , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17+/-5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213+/-0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.
Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Água/química , Canadá , Monitoramento Ambiental , Oceanos e Mares , Rios/química , Estações do Ano , Movimentos da ÁguaRESUMO
Although there is now a general consensus among mercury (Hg) biogeochemists that increased atmospheric inputs of inorganic Hg(II) to lakes and watersheds can result in increased methylmercury (MeHg) concentrations in fish, researchers still lack kinetic data describing the movement of Hg from the atmosphere, through watershed and lake ecosystems, and into fish. The use of isotopically enriched Hg species in environmental studies now allows experimentally applied new Hg to be distinguished from ambient Hg naturally present in the system. Four different enriched stable Hg(II) isotope "spikes" were applied sequentially over four years to the ground vegetation of a microcatchment at the Experimental Lakes Area (ELA) in the remote boreal forest of Canada to examine retention of Hg(II) following deposition. Areal masses of the spikes and ambient THg (all forms of Hg in a sample) were monitored for eight years, and the pattern of spike retention was used to estimate retention of newly deposited ambient Hg within the ground vegetation pool. Fifty to eighty percent of applied spike Hg was initially retained by ground vegetation. The areal mass of spike Hg declined exponentially over time and was best described by a first-order process with constants(k) ranging between 9.7 x 10(-40 day(-1) and 11.6 x 10(-4) day(-1). Average halflife (t1/2) of spike Hg within the ground vegetation pool (+/-S.D.) was 704 +/- 52 days. This retention of new atmospheric Hg(II) by vegetation delays movement of new Hg(II) into soil, runoff, and finally into adjacent lakes. Ground-applied Hg(II) spikes were not detected in tree foliage and litterfall, indicating that stomatal and/or root uptake of previously deposited Hg (i.e., "recycled" from ground vegetation or soil Hg pools) were likely not large sources of foliar Hg under these experimental conditions.
Assuntos
Atmosfera , Monitoramento Ambiental/métodos , Isótopos de Mercúrio/análise , Mercúrio/análise , Folhas de Planta/química , Canadá , Ecossistema , Meio Ambiente , Poluentes Ambientais/análise , Água Doce , Geografia , Árvores , Poluentes Químicos da Água , Abastecimento de ÁguaRESUMO
Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified atthe remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 +/- 17 and 0.5 +/- 0.2 mg ha(-1), respectively. Throughfall THg and MeHg loadings were generally 2-4 times and 0.8-2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86-105 mg ha(-1)) and MeHg (0.7-0.8 mg ha(-1)) to the landscape on an annual basis. Using the "direct" method of estimating dry deposition (thoughfall + litterfall - open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha(-1), whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha(-1). Photoreduction and emission of wet-deposited Hg(ll) from canopy foliage were accounted for, resulting in 3-5% (5-6 mg ha(-1)) higher annual estimates of dry deposition than via the direct method alone. NetTHg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg.
Assuntos
Ecossistema , Compostos de Metilmercúrio/análise , Árvores , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental/métodos , Água Doce , Humanos , Ontário , Áreas AlagadasRESUMO
We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute
Assuntos
Compostos de Metilmercúrio/análise , Água do Mar/análise , Neve/química , Regiões Árticas , Canadá , Monitoramento Ambiental/métodos , Geografia , Compostos de Metilmercúrio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/químicaRESUMO
Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wildlife worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed.
Assuntos
Ecossistema , Peixes/metabolismo , Água Doce/química , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Poluição Química da Água/análise , Animais , Isótopos de Mercúrio/análise , Compostos de Metilmercúrio/metabolismoRESUMO
This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of approximately 2-3 ng m(-3). Using enriched stable Hg isotope spikes, patterns of spike Hg(ll) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations over time could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that eitherthe chamber underestimates the true photoreduction of Hg(ll) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(ll) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes.