Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Cogn Neurosci ; 58: 101164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36274574

RESUMO

Little is known about how exposure to limited socioeconomic resources (SER) in childhood gets "under the skin" to shape brain development, especially using rigorous whole-brain multivariate methods in large, adequately powered samples. The present study examined resting state functional connectivity patterns from 5821 youth in the Adolescent Brain Cognitive Development (ABCD) study, employing multivariate methods across three levels: whole-brain, network-wise, and connection-wise. Across all three levels, SER was associated with widespread alterations across the connectome. However, critically, we found that parental education was the primary driver of neural associations with SER. These parental education associations with the developing connectome exhibited notable concentrations in somatosensory and subcortical regions, and they were partially accounted for by home enrichment activities, child's cognitive abilities, and child's grades, indicating interwoven links between parental education, child stimulation, and child cognitive performance. These results add a new data-driven, multivariate perspective on links between household SER and the child's developing functional connectome.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Criança , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Fatores Socioeconômicos , Rede Nervosa/fisiologia
2.
Front Hum Neurosci ; 15: 709275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512296

RESUMO

Continuous theta burst stimulation (cTBS) is a powerful form of repetitive transcranial magnetic stimulation capable of suppressing cortical excitability for up to 50 min. A growing number of studies have applied cTBS to the visual cortex in human subjects to investigate the neural dynamics of visual processing, but few have specifically examined its effects on central vision, which has crucial implications for safety and inference on downstream cognitive effects. The present study assessed the safety of offline, neuronavigated cTBS to V2 by examining its effects on central vision performance. In this single-blind, randomized sham-controlled, crossover study, 17 healthy adults received cTBS (at 80% active motor threshold) and sham to V2 1-2 weeks apart. Their central vision (≤8°) was tested at 1-min (T1) and again at 50-min (T50) post-stimulation. Effects of condition (cTBS vs. sham) and time (T1 vs. T50) on accuracy and reaction time were examined using Bayes factor. Bayes factor results suggested that cTBS did not impair stimulus detection over the entire central visual field nor subfields at T1 or T50. Our results offer the first explicit evidence supporting that cTBS applied to V2 does not create blind spots in the central visual field in humans during a simple detection task. Any subtler changes to vision and downstream visual perception should be investigated in future studies.

3.
Transl Psychiatry ; 11(1): 575, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753911

RESUMO

Convergent research identifies a general factor ("P factor") that confers transdiagnostic risk for psychopathology. Large-scale networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9- and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-scale networks. These connectivity changes were then further characterized with quadrant analysis that quantified the directionality of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of networks); pPERMUTATION values < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among connections within these 28 significant cells, the P factor was predominantly associated with "attenuating" effects (67%; pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically negative connections. These results demonstrate that the general factor of psychopathology produces attenuating changes across multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into developmental causes of distributed attenuated connectivity.


Assuntos
Mapeamento Encefálico , Transtornos Mentais , Adolescente , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Psicopatologia
4.
Transl Psychiatry ; 11(1): 571, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750359

RESUMO

General cognitive ability (GCA) is an individual difference dimension linked to important academic, occupational, and health-related outcomes and its development is strongly linked to differences in socioeconomic status (SES). Complex abilities of the human brain are realized through interconnections among distributed brain regions, but brain-wide connectivity patterns associated with GCA in youth, and the influence of SES on these connectivity patterns, are poorly understood. The present study examined functional connectomes from 5937 9- and 10-year-olds in the Adolescent Brain Cognitive Development (ABCD) multi-site study. Using multivariate predictive modeling methods, we identified whole-brain functional connectivity patterns linked to GCA. In leave-one-site-out cross-validation, we found these connectivity patterns exhibited strong and statistically reliable generalization at 19 out of 19 held-out sites accounting for 18.0% of the variance in GCA scores (cross-validated partial η2). GCA-related connections were remarkably dispersed across brain networks: across 120 sets of connections linking pairs of large-scale networks, significantly elevated GCA-related connectivity was found in 110 of them, and differences in levels of GCA-related connectivity across brain networks were notably modest. Consistent with prior work, socioeconomic status was a strong predictor of GCA in this sample, and we found that distributed GCA-related brain connectivity patterns significantly statistically mediated this relationship (mean proportion mediated: 15.6%, p < 2 × 10-16). These results demonstrate that socioeconomic status and GCA are related to broad and diffuse differences in functional connectivity architecture during early adolescence, potentially suggesting a mechanism through which socioeconomic status influences cognitive development.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adolescente , Encéfalo , Cognição , Humanos , Classe Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA