Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biol Chem ; 295(21): 7501-7515, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32317281

RESUMO

S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.


Assuntos
Proteína 25 Associada a Sinaptossoma/metabolismo , Acilação , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Células PC12 , Domínios Proteicos , Ratos , Proteína 25 Associada a Sinaptossoma/genética
2.
J Cell Sci ; 131(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254024

RESUMO

STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acilação/genética , Transporte Proteico/genética , Proteínas Q-SNARE/metabolismo , Humanos
3.
J Cell Sci ; 131(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30154213

RESUMO

The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1ß) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1ß directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Animais , Células Cultivadas , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 114(8): E1365-E1374, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167757

RESUMO

S-acylation is a major posttranslational modification, catalyzed by the zinc finger DHHC domain containing (zDHHC) enzyme family. S-acylated proteins can be modified by different fatty acids; however, very little is known about how zDHHC enzymes contribute to acyl chain heterogeneity. Here, we used fatty acid-azide/alkyne labeling of mammalian cells, showing their transformation into acyl-CoAs and subsequent click chemistry-based detection, to demonstrate that zDHHC enzymes have marked differences in their fatty acid selectivity. This difference in selectivity was apparent even for highly related enzymes, such as zDHHC3 and zDHHC7, which displayed a marked difference in their ability to use C18:0 acyl-CoA as a substrate. Furthermore, we identified isoleucine-182 in transmembrane domain 3 of zDHHC3 as a key determinant in limiting the use of longer chain acyl-CoAs by this enzyme. This study uncovered differences in the fatty acid selectivity profiles of cellular zDHHC enzymes and mapped molecular determinants governing this selectivity.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Acil Coenzima A/metabolismo , Acilação/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Química Click/métodos , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Especificidade por Substrato/fisiologia , Dedos de Zinco/fisiologia
5.
Nat Chem Biol ; 17(4): 371-372, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707783
6.
Mol Cell Neurosci ; 85: 235-246, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28768144

RESUMO

The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals.


Assuntos
Aciltransferases/metabolismo , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/metabolismo , Espaço Intracelular/metabolismo , Células PC12 , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico , Ratos , Ratos Sprague-Dawley
7.
Biochem Soc Trans ; 45(3): 751-758, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620036

RESUMO

S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.


Assuntos
Aciltransferases/metabolismo , Acilação , Animais , Cisteína/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato
8.
Trends Biochem Sci ; 36(5): 245-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388813

RESUMO

S-palmitoylation is a reversible post-translational modification that occurs on diverse cellular proteins. Palmitoylation can affect proteins in many different ways, including regulating membrane attachment, intracellular trafficking, and membrane micro-localisation. Intracellular palmitoylation reactions are mediated by a family of recently identified aspartate-histidine-histidine-cysteine (DHHC) palmitoyl transferases. More than 20 DHHC proteins are encoded by mammalian genomes, and there is now a major effort to identify DHHC-substrate pairings and to determine how interaction specificity is encoded. Recent studies have highlighted how DHHC proteins regulate cell function and influence physiology and pathophysiology.


Assuntos
Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo , Família Multigênica , Ácido Palmítico/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Animais , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Especificidade por Substrato
9.
Biochem Soc Trans ; 43(2): 217-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849920

RESUMO

The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.


Assuntos
Acilação/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Humanos , Família Multigênica/genética , Especificidade por Substrato
10.
J Pathol ; 233(1): 4-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615251

RESUMO

S-acylation (also known as palmitoylation) is a major post-translational protein modification in all eukaryotic cells, involving the attachment of fatty acids onto cysteine residues. A variety of structural and signalling proteins are modified in this way, affecting their stability, membrane association and intracellular targeting. The enzymes that mediate S-acylation are encoded by genes belonging to the large (> 20 genes) ZDHHC family. The importance of these enzymes for normal physiological function is highlighted by their links to a diverse range of disease states, including neurological disorders, such as Huntington's disease, schizophrenia and intellectual disability, and diabetes and cancer. The recent study by Yeste-Velasco et al published in the Journal of Pathology highlights a novel tumour suppressor function for the zDHHC family: expression of zDHHC14 is decreased in testicular germ cell tumours, prostate cancer and a variety of other cancer types. This important finding further emphasizes the emerging clinical significance of the zDHHC family of S-acylation enzymes.


Assuntos
Aciltransferases/genética , Genes Supressores de Tumor , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias da Próstata/genética , Neoplasias Testiculares/genética , Animais , Humanos , Masculino
11.
J Biol Chem ; 287(44): 37330-9, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22902780

RESUMO

Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Lipoilação , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Lipofuscinoses Ceroides Neuronais/genética , Processamento de Proteína Pós-Traducional , Aciltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Córtex Cerebral/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Lipofuscinoses Ceroides Neuronais/metabolismo , Células PC12 , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Ratos
12.
J Cell Sci ; 124(Pt 8): 1351-60, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21429935

RESUMO

SNAP25 regulates membrane fusion events at the plasma membrane and in the endosomal system, and a functional pool of the protein is delivered to recycling endosomes (REs) and the trans Golgi network (TGN) through an ARF6-dependent cycling pathway. SNAP25 is a peripheral membrane protein, and palmitoylation of a cluster of four cysteine residues mediates its stable association with the membrane. Here, we report that palmitoylation also determines the precise intracellular distribution of SNAP25, and that mutating single palmitoylation sites enhances the amount of SNAP25 at the RE and TGN. The farnesylated CAAX motif from Hras was ligated onto a SNAP25 mutant truncated immediately distal to the cysteine-rich domain. This construct displayed the same intracellular distribution as full-length SNAP25, and decreasing the number of cysteine residues in this construct increased its association with the RE and TGN, confirming the dominant role of the cysteine-rich domain in directing the intracellular distribution of SNAP25. Marked differences in the localisations of SNAP25-CAAX and Hras constructs, each with two palmitoylation sites, were observed, showing that subtle differences in palmitoylated sequences can have a major impact upon intracellular targeting. We propose that the cysteine-rich domain of SNAP25 is designed to facilitate the dual function of this SNARE protein at the plasma membrane and endosomes, and that dynamic palmitoylation acts as a mechanism to regulate the precise intracellular patterning of SNAP25.


Assuntos
Espaço Intracelular/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Espaço Intracelular/genética , Lipoilação , Células PC12 , Transporte Proteico , Ratos , Proteína 25 Associada a Sinaptossoma/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo
13.
Biochem Soc Trans ; 41(1): 62-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356259

RESUMO

Palmitoylation, the attachment of palmitate and other fatty acids on to cysteine residues, is a common post-translational modification of both integral and peripheral membrane proteins. Dynamic palmitoylation controls the intracellular distribution of peripheral membrane proteins by regulating membrane-cytosol exchange and/or by modifying the flux of the proteins through vesicular transport systems.


Assuntos
Lipoilação , Proteínas de Membrana/metabolismo , Ácido Palmítico/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Frações Subcelulares , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas ras/metabolismo
14.
ACS Med Chem Lett ; 14(10): 1404-1410, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849541

RESUMO

12-Thiazole abietanes are highly selective reversible inhibitors of hABHD16A that could potentially alleviate neuroinflammation. In this study, we used synthetic chemistry, competitive activity-based protein profiling, and computational methodologies to try to establish relevant structural determinants of activity and selectivity of this class of compounds for inhibiting ABHD16A over ABHD12. Five compounds significantly inhibited hABHD16A but also very efficiently discriminated between inhibition of hABHD16A and hABHD12, with compound 35 being the most effective, at 100 µM (55.1 ± 8.7%; p < 0.0001). However, an outstanding switch in the selectivity toward ABHD12 was observed in the presence of a ring A ester, if the C2' position of the thiazole ring possessed a 1-hydroxyethyl group, as in compound 28. Although our data were inconclusive as to whether the observed enzyme inhibition is allosteric or not, we anticipate that the structure-activity relationships presented herein will inspire future drug discovery efforts in this field.

15.
J Biol Chem ; 286(45): 39573-84, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21926431

RESUMO

Intracellular palmitoylation dynamics are regulated by a family of 24 DHHC (aspartate-histidine-histidine-cysteine) palmitoyltransferases, which are localized in a compartment-specific manner. The majority of DHHC proteins localize to endoplasmic reticulum (ER) and Golgi membranes, and a small number target to post-Golgi membranes. To date, there are no reports of the fine mapping of sorting signals in mammalian DHHC proteins; thus, it is unclear how spatial distribution of the DHHC family is achieved. Here, we have identified and characterized lysine-based sorting signals that determine the restricted localization of DHHC4 and DHHC6 to ER membranes. The ER targeting signal in DHHC6 conforms to a KKXX motif, whereas the signal in DHHC4 is a distinct KXX motif. The identified dilysine signals are sufficient to specify ER localization as adding the C-terminal pentapeptide sequences from DHHC4 or DHHC6, which contain these KXX and KKXX motifs, to the C terminus of DHHC3, redistributes this palmitoyltransferase from Golgi to ER membranes. Recent work proposed that palmitoylation of newly synthesized peripheral membrane proteins occurs predominantly at the Golgi. Indeed, previous analyses of the peripheral membrane proteins, SNAP25 and cysteine string protein, are fully consistent with their initial palmitoylation being mediated by Golgi-localized DHHC proteins. Interestingly, ER-localized DHHC3 is able to palmitoylate SNAP25 and cysteine string protein to a similar level as wild-type Golgi-localized DHHC3 in co-expression studies. These results suggest that targeting of intrinsically active DHHC proteins to defined membrane compartments is an important factor contributing to spatially restricted patterns of substrate palmitoylation.


Assuntos
Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Membranas Intracelulares/enzimologia , Lipoilação/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Aciltransferases/genética , Motivos de Aminoácidos , Animais , Complexo de Golgi/genética , Células HEK293 , Humanos , Células PC12 , Transporte Proteico/fisiologia , Ratos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
16.
J Cell Biol ; 176(3): 249-54, 2007 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-17242068

RESUMO

S-palmitoylation is a posttranslational modification that regulates membrane-protein interactions. However, palmitate is more than just a hydrophobic membrane anchor, as many different types of protein are palmitoylated, including transmembrane proteins. Indeed, there is now compelling evidence that palmitoylation plays a key role in regulating various aspects of protein sorting within the cell.


Assuntos
Ácidos Palmíticos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Animais , Humanos
17.
J Biol Chem ; 285(32): 24629-38, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20519516

RESUMO

SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Ácido Palmítico/química , Proteínas Qb-SNARE/fisiologia , Proteínas Qc-SNARE/fisiologia , Proteína 25 Associada a Sinaptossoma/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cisteína/química , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Células PC12 , Isoformas de Proteínas , Ratos , Homologia de Sequência de Aminoácidos , Proteína 25 Associada a Sinaptossoma/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(52): 21006-11, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19098106

RESUMO

Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphorylation of the alpha-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single alpha-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.


Assuntos
Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Membrana Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Homeostase/fisiologia , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Mutagênese Sítio-Dirigida/métodos , Fosforilação/fisiologia , Estrutura Terciária de Proteína/fisiologia
19.
Biochem Soc Trans ; 38(2): 522-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298214

RESUMO

A family of 23 DHHC (Asp-His-His-Cys) proteins that function as mammalian S-acyltransferases has been identified, reinvigorating the study of protein S-acylation. Recent studies have continued to reveal how S-acylation affects target proteins, and have provided glimpses of how DHHC-substrate specificity might be achieved.


Assuntos
Aciltransferases/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/fisiologia , Animais , Catálise , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família Multigênica , Proteínas/metabolismo , Especificidade por Substrato , Distribuição Tecidual
20.
Biochem Soc Trans ; 38(Pt 1): 163-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074052

RESUMO

The SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) protein SNAP-25 (25 kDa synaptosome-associated protein) is essential for regulated exocytosis in neuronal and neuroendocrine cells. Whereas the majority of SNARE proteins contain transmembrane domains, SNAP-25 is instead anchored to membranes by the palmitoylation of a central cysteine-rich region. In this review, we discuss the mechanisms of SNAP-25 palmitoylation and how this modification regulates the intracellular trafficking and exocytotic function of this essential protein.


Assuntos
Exocitose/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Aciltransferases/metabolismo , Animais , Humanos , Lipoilação , Transporte Proteico/fisiologia , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA