Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 105(2): 115861, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495738

RESUMO

Transmission by asymptomatic individuals is a persistent hurdle in the effort to control the spread of SARS-CoV-2. Therefore, it is essential to continue developing assays and evaluate their performance for detection of SARS-CoV-2 in individuals without COVID-19 symptoms. In this study, 223 nasopharyngeal swab specimens collected from COVID-19 asymptomatic individuals were tested using the BD SARS-CoV-2 (RT-PCR-based) reagents for the BD MAX™ System and compared with results obtained with the Biomerieux BioFire® Respiratory RT-PCR Panel. Positive and negative percent agreements of 100% (95% CI, 84.5%-100%) and 99.0% (95% CI, 96.5%-99.7%), respectively, were observed for the BD SARS-CoV-2 assay. These results demonstrate the effectiveness of the BD SARS-CoV-2 assay for detecting SARS-CoV-2 in asymptomatic individuals and suggest that this assay can facilitate optimized case surveillance and infection control efforts. Investigations using larger sample sizes of asymptomatic individuals would be beneficial to support the findings in this study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Indicadores e Reagentes , Sensibilidade e Especificidade , Nasofaringe
2.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202050

RESUMO

Herpes simplex viruses-1 and -2 (HSV-1 and -2) are two of the three human alphaherpesviruses that cause infections worldwide. Since both viruses can be acquired in the absence of visible signs and symptoms, yet still result in lifelong infection, it is imperative that we provide interventions to keep them at bay, especially in immunocompromised patients. While numerous experimental vaccines are under consideration, current intervention consists solely of antiviral chemotherapeutic agents. This review explores all of the clinically approved drugs used to prevent the worst sequelae of recurrent outbreaks by these viruses.


Assuntos
Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Antivirais/efeitos adversos , Antivirais/farmacocinética , Antivirais/farmacologia , Disponibilidade Biológica , DNA Polimerase Dirigida por DNA/metabolismo , Farmacorresistência Viral , Herpes Simples/virologia , Humanos , Inibidores da Síntese de Ácido Nucleico/efeitos adversos , Inibidores da Síntese de Ácido Nucleico/farmacocinética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
3.
Antiviral Res ; 176: 104754, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32114034

RESUMO

Herpes simplex virus-1 (HSV-1) affects a large portion of the global population and has been shown to cause more severe symptoms in immunocompromised patients. It is in immunocompromised populations that HSV-1 has shown to have higher rates of resistance to the most commonly used antiherpetics, such as acyclovir/valacyclovir/penciclovir/famciclovir. The development of drug resistance has forced research into new antiherpetic therapies, including combination drug therapies. One potential complication of multidrug therapies is the existence of drug-drug interactions; as more drugs are used in the therapy, those interactions tend to become more complicated. This study tested the combination of acyclovir/cidofovir/amenamevir, the last drug being a new antiherpetic that targets the helicase-primase complex to prevent replication of viral DNA, for multidrug intervention. We used the design of experiments (DOE) function in Minitab to analyze the drug-drug interactions in their ability to inhibit growth of HSV-1. The DOE software was unable to detect any significant drug-drug interactions among these three antiherpetics as dosed. This would imply that these drugs could be used in combination to suppress viral replication without synergistic or antagonistic effects. This study shows that this therapy holds potential for further study and that DOE software is a potentially useful tool for determining complex drug-drug interactions.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Cidofovir/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Oxidiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Farmacorresistência Viral , Sinergismo Farmacológico , Herpesvirus Humano 1/fisiologia , Concentração Inibidora 50 , Células Vero
4.
J Drug Deliv ; 2018: 6161230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356432

RESUMO

Treatment for herpes simplex virus-1 and -2 (HSV-1 and -2) patients who suffer from recurrent outbreaks consists of multiple daily doses of the antiviral drugs acyclovir (ACV), penciclovir, or their more orally bioavailable derivatives valacyclovir or famciclovir. Drug troughs caused by missed doses may result in viral replication, which can generate drug-resistant mutants along with clinical sequelae. We developed a molecularly homogeneous mixture of ACV with the bioerodable polymer polycaprolactone. Through scanning electron microscopy, infrared spectroscopy, gel permeation chromatography, 1H NMR, and differential scanning calorimetry, our method of combining drug and polymer, termed Volatile Acid-Solvent Evaporation (VASE), does not compromise the integrity of polymer or drug. Furthermore, VASE creates materials that deliver therapeutic amounts of drug consistently for approximately two months. Devices with high enough drug loads diminish primary infection of HSV-1 in Vero cells to the same level as seen with a single dose of ACV. Our data will lead to further experiments in animal models, demonstrating efficacy in preventing reactivation of these viruses with a single intervention, and with other antiviral drugs amenable to such manipulation. Additionally, this type of treatment would leave no trace after its useful lifetime, as drug is released and polymer matrix is degraded in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA