Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 204(3): 682-693, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871023

RESUMO

Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)-mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkA-dependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.


Assuntos
Alternaria/fisiologia , Alternariose/imunologia , Asma/imunologia , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Receptor trkA/metabolismo , Hipersensibilidade Respiratória/imunologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CCL11/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Mutação/genética , Receptor trkA/genética , Transdução de Sinais
2.
Exp Lung Res ; 46(7): 243-257, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32578458

RESUMO

Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.


Assuntos
Alérgenos/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , RNA Interferente Pequeno/metabolismo , Hipersensibilidade Respiratória/metabolismo , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/metabolismo , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Eosinofilia Pulmonar/tratamento farmacológico , Eosinofilia Pulmonar/metabolismo , Interferência de RNA/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 113(33): E4837-46, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27457925

RESUMO

Galectin-1 (Gal-1), a glycan-binding protein with broad antiinflammatory activities, functions as a proresolving mediator in autoimmune and chronic inflammatory disorders. However, its role in allergic airway inflammation has not yet been elucidated. We evaluated the effects of Gal-1 on eosinophil function and its role in a mouse model of allergic asthma. Allergen exposure resulted in airway recruitment of Gal-1-expressing inflammatory cells, including eosinophils, as well as increased Gal-1 in extracellular spaces in the lungs. In vitro, extracellular Gal-1 exerted divergent effects on eosinophils that were N-glycan- and dose-dependent. At concentrations ≤0.25 µM, Gal-1 increased eosinophil adhesion to vascular cell adhesion molecule-1, caused redistribution of integrin CD49d to the periphery and cell clustering, but inhibited ERK(1/2) activation and eotaxin-1-induced migration. Exposure to concentrations ≥1 µM resulted in ERK(1/2)-dependent apoptosis and disruption of the F-actin cytoskeleton. At lower concentrations, Gal-1 did not alter expression of adhesion molecules (CD49d, CD18, CD11a, CD11b, L-selectin) or of the chemokine receptor CCR3, but decreased CD49d and CCR3 was observed in eosinophils treated with higher concentrations of this lectin. In vivo, allergen-challenged Gal-1-deficient mice exhibited increased recruitment of eosinophils and CD3(+) T lymphocytes in the airways as well as elevated peripheral blood and bone marrow eosinophils relative to corresponding WT mice. Further, these mice had an increased propensity to develop airway hyperresponsiveness and displayed significantly elevated levels of TNF-α in lung tissue. This study suggests that Gal-1 can limit eosinophil recruitment to allergic airways and suppresses airway inflammation by inhibiting cell migration and promoting eosinophil apoptosis.


Assuntos
Asma/etiologia , Eosinofilia/etiologia , Galectina 1/fisiologia , Animais , Apoptose , Adesão Celular , Quimiocinas/análise , Citocinas/análise , Eosinófilos/fisiologia , Galectina 1/análise , Pulmão/química , Camundongos , Camundongos Endogâmicos C57BL
4.
J Allergy Clin Immunol ; 142(6): 1808-1817.e3, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29522849

RESUMO

BACKGROUND: Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE: We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS: Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS: Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION: Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.


Assuntos
Proteínas do Capsídeo/farmacologia , Proteínas do Capsídeo/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Adenoviridae , Idoso , Animais , Brônquios/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Caderinas/metabolismo , Linhagem Celular , Citocinas/imunologia , Eosinofilia/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ocludina/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia
5.
Exp Lung Res ; 44(2): 98-112, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29621420

RESUMO

BACKGROUND: HSPGs are glycoproteins containing covalently attached heparan sulfate (HS) chains which bind to growth factors, chemokines, etc., and regulate various aspects of inflammation including cell recruitment. We previously showed that deletion of endothelial N-acetylglucosamine N-deacetylase-N-sulfotransferase-1 (Ndst1), an enzyme responsible for N-sulfation during HS biosynthesis, reduces allergic airway inflammation (AAI). Here, we investigated the importance of O-sulfation mediated by uronyl 2-O-sulfotransferase (Hs2st) in development of AAI relative to N-sulfation. METHODS: Mice deficient in endothelial and leukocyte Hs2st (Hs2stf/fTie2Cre+) or Ndst1 (Ndst1f/fTie2Cre+) and WT mice were challenged with Alternaria alternata and evaluated for airway inflammation. Trafficking of murine eosinophils on lung endothelial cells was examined in vitro under conditions of flow. RESULTS: Exposure to Alternaria decreased expression level of Hs2st in WT mice while level of Ndst1 remained unchanged. Compared to WT mice, Alternaria-challenged Hs2stf/fTie2Cre+ mice exhibited significantly increased eosinophils in the bone marrow, bronchoalveolar lavage fluid [BALF] and lung tissue associated with persistent airway hyperresponsiveness, airway mucus hypersecretion and elevated Th2 cytokines. In contrast, Alternaria-challenged Ndst1f/fTie2Cre+ mice exhibited a marked reduction in airway eosinophilia, mucus secretion and smooth muscle mass compared to WT counterparts. While BALF eotaxins were lower in Alternaria-challenged Hs2stf/fTie2Cre+ relative to WT mice, they were not reduced to background levels as in allergen-challenged Ndst1f/fTie2Cre+ mice. Trafficking of murine eosinophils under conditions of flow in vitro was similar on Hs2st-deficient and WT endothelial cells. Expression of ZO-1 in Hs2st-deficient lung blood vessels in control and allergen-challenged mice was significantly lower than in WT counterparts. CONCLUSIONS: Our study demonstrates that allergen exposure reduces expression of Hs2st; loss of uronyl 2-O-sulfation in endothelial and leukocyte HSPG amplifies recruitment of eosinophils likely due to a compromised vascular endothelium resulting in persistent inflammation whereas loss of N-sulfation limits eosinophilia and attenuates inflammation underscoring the importance of site-specific sulfation in HSPG to their role in AAI.


Assuntos
Eosinófilos/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Inflamação/metabolismo , Hipersensibilidade Respiratória/metabolismo , Sulfotransferases/metabolismo , Alérgenos/farmacologia , Alternaria/patogenicidade , Animais , Movimento Celular , Células Endoteliais/patologia , Eosinofilia/etiologia , Pulmão/patologia , Camundongos , Hipersensibilidade Respiratória/etiologia
6.
Glycobiology ; 24(8): 715-27, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24794009

RESUMO

Heparan sulfate (HS) proteoglycans (HSPGs) participate in several aspects of inflammation because of their ability to bind to growth factors, chemokines, interleukins and extracellular matrix proteins as well as promote inflammatory cell trafficking and migration. We investigated whether HSPGs play a role in the development of airway remodeling during chronic allergic asthma using mice deficient in endothelial- and leukocyte-expressed N-deacetylase/N-sulfotransferase-1 (Ndst1), an enzyme involved in modification reactions during HS biosynthesis. Ndst1-deficient and wild-type (WT) mice exposed to repetitive allergen (ovalbumin [OVA]) challenge were evaluated for the development of airway remodeling. Chronic OVA-challenged WT mice exhibited increased HS expression in the lungs along with airway eosinophilia, mucus hypersecretion, peribronchial fibrosis, increased airway epithelial thickness and smooth muscle mass. In OVA-challenged Ndst1-deficient mice, lung eosinophil and macrophage infiltration as well as airway mucus accumulation, peribronchial fibrosis and airway epithelial thickness were significantly lower than in allergen-challenged WT mice along with a trend toward decreased airway smooth muscle mass. Leukocyte and endothelial Ndst 1 deficiency also resulted in significantly decreased expression of IL-13 as well as remodeling-associated mediators such as VEGF, FGF-2 and TGF-ß1 in the lung tissue. At a cellular level, exposure to eotaxin-1 failed to induce TGF-ß1 expression by Ndst1-deficient eosinophils relative to WT eosinophils. These studies suggest that leukocyte and endothelial Ndst1-modified HS contribute to the development of allergen-induced airway remodeling by promoting recruitment of inflammatory cells as well as regulating expression of pro-remodeling factors such as IL-13, VEGF, TGF-ß1 and FGF-2 in the lung.


Assuntos
Remodelação das Vias Aéreas , Alérgenos/imunologia , Células Endoteliais/química , Heparitina Sulfato/metabolismo , Leucócitos/química , Modelos Animais , Animais , Células Endoteliais/metabolismo , Heparitina Sulfato/química , Inflamação/metabolismo , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteoglicanas/química , Proteoglicanas/metabolismo
7.
J Leukoc Biol ; 104(1): 109-122, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345370

RESUMO

Prevalence of food allergies in the United States is on the rise. Eosinophils are recruited to the intestinal mucosa in substantial numbers in food allergen-driven gastrointestinal (GI) inflammation. Soluble epoxide hydrolase (sEH) is known to play a pro-inflammatory role during inflammation by metabolizing anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. We investigated the role of sEH in a murine model of food allergy and evaluated the potential therapeutic effect of a highly selective sEH inhibitor (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]-cyclohexyloxy}-benzoic acid [t-TUCB]). Oral exposure of mice on a soy-free diet to soy protein isolate (SPI) induced expression of intestinal sEH, increased circulating total and antigen-specific IgE levels, and caused significant weight loss. Administration of t-TUCB to SPI-challenged mice inhibited IgE levels and prevented SPI-induced weight loss. Additionally, SPI-induced GI inflammation characterized by increased recruitment of eosinophils and mast cells, elevated eotaxin 1 levels, mucus hypersecretion, and decreased epithelial junction protein expression. In t-TUCB-treated mice, eosinophilia, mast cell recruitment, and mucus secretion were significantly lower than in untreated mice and SPI-induced loss of junction protein expression was prevented to variable levels. sEH expression in eosinophils was induced by inflammatory mediators TNF-α and eotaxin-1. Treatment of eosinophils with t-TUCB significantly inhibited eosinophil migration, an effect that was mirrored by treatment with 11,12-EET, by inhibiting intracellular signaling events such as ERK (1/2) activation and eotaxin-1-induced calcium flux. These studies suggest that sEH induced by soy proteins promotes allergic responses and GI inflammation including eosinophilia and that inhibition of sEH can attenuate these responses.


Assuntos
Eosinófilos/imunologia , Epóxido Hidrolases/antagonistas & inibidores , Hipersensibilidade Alimentar/enzimologia , Gastroenterite/enzimologia , Animais , Benzoatos/farmacologia , Quimiotaxia de Leucócito/imunologia , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos de Fenilureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA