Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Neurosci ; 43(6): 1051-1071, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36596700

RESUMO

Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Masculino , Feminino , Camundongos , Humanos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Olfato , Proteômica , Camundongos Transgênicos , Neurogênese , Transtornos do Olfato/genética , Modelos Animais de Doenças
2.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36352504

RESUMO

In shotgun metagenomics (SM), the state-of-the-art bioinformatic workflows are referred to as high-resolution shotgun metagenomics (HRSM) and require intensive computing and disk storage resources. While the increase in data output of the latest iteration of high-throughput DNA sequencing systems can allow for unprecedented sequencing depth at a minimal cost, adjustments in HRSM workflows will be needed to properly process these ever-increasing sequence datasets. One potential adaptation is to generate so-called shallow SM datasets that contain fewer sequencing data per sample as compared with the more classic high coverage sequencing. While shallow sequencing is a promising avenue for SM data analysis, detailed benchmarks using real-data are lacking. In this case study, we took four public SM datasets, one massive and the others moderate in size and subsampled each dataset at various levels to mimic shallow sequencing datasets of various sequencing depths. Our results suggest that shallow SM sequencing is a viable avenue to obtain sound results regarding microbial community structures and that high-depth sequencing does not bring additional elements for ecological interpretation. More specifically, results obtained by subsampling as little as 0.5 M sequencing clusters per sample were similar to the results obtained with the largest subsampled dataset for human gut and agricultural soil datasets. For an Antarctic dataset, which contained only a few samples, 4 M sequencing clusters per sample was found to generate comparable results to the full dataset. One area where ultra-deep sequencing and maximizing the usage of all data was undeniably beneficial was in the generation of metagenome-assembled genomes.


Assuntos
Metagenômica , Microbiota , Humanos , Análise de Sequência de DNA/métodos , Metagenômica/métodos , Metagenoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética
3.
Can J Microbiol ; 70(5): 163-177, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350082

RESUMO

Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Regiões Árticas , Canadá , Poluição por Petróleo , Filogenia , Água do Mar/microbiologia
4.
Environ Res ; 222: 115329, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693458

RESUMO

The Arctic is a unique environment characterized by extreme conditions, including daylight patterns, sea ice cover, and some of the lowest temperatures on Earth. Such characteristics in tandem present challenges when extrapolating information from oil spill research within warmer, more temperate regions. Consequently, oil spill studies must be conducted within the Arctic to yield accurate and reliable results. Sites of the Baffin Island Oil Spill (BIOS) project (Cape Hatt, Baffin Island, Canadian Arctic) were revisited nearly 40 years after the original oil application to provide long-term monitoring data for Arctic oil spill research. Surface and subsurface sediment samples were collected from the intertidal zone of the 1981 nearshore oil spill experiment (Bay 11), from 1980 supratidal control plots (Crude Oil Point) and 1982 supratidal treatment plots (Bay 106). Samples were analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) and alkylated homologues via Gas Chromatography - Mass Spectrometry (GC-MS). Our results suggest that total mean concentrations of all measured PAHs range from 0.049 to 14 mg/kg, whereas total mean concentrations of the 16 US EPA priority PAHs range from 0.02 to 2.1 mg/kg. The relative proportions of individual PAHs were compared between sampling sites and with the original technical mixture. Where available, percent loss of individual PAHs was compared with data from samples collected at the BIOS site, in 2001. All three sites featured samples where concentrations of various priority PAHs exceeded the established Interim Marine Sediment Quality Guidelines. All supratidal samples contained potentially toxic levels of PAHs. Even after nearly four decades of weathering, the recalcitrant crude oil residues remain a potential hazard for the native organisms. Continued monitoring of this unique study site is crucial for establishing a timeline for oil degradation, and to observe a reduction in toxicity over time.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Canadá , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos
5.
Environ Res ; 216(Pt 1): 114456, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181891

RESUMO

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill. Test plots were established and subjected to an experimental crude oil spill to evaluate natural attenuation, nutrient amendment and vegetation cropping as countermeasures. In 2020, this study re-visited the test plots to investigate residual oil and habitat recovery. Only concentrations of mid-chain length n-alkanes (C10-C36), but not of polycyclic aromatic hydrocarbons (PAHs), were significantly above detection limit, and were detected in both test plot and control sediments. Hydrocarbon, total organic carbon, nitrogen and phosphate contents did not differ significantly between test plot and control sediments. Microbial analyses did not detect significant differences in microbial load, microbial diversity or microbial community composition between test plot and control sediments. Key genes for the aerobic and anaerobic degradation of n-alkanes as well as for the aerobic degradation of PAHs were detected in all sediment samples. Associated gene abundances did not differ significantly between test plot and control sediments. This study shows that oil-exposed test plot sediments of the Ste. Croix wetland can be considered completely recovered after 21 years irrespective of the performed countermeasure.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Rios , Áreas Alagadas , Petróleo/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental
6.
Environ Res ; 233: 116421, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327845

RESUMO

With an on-going disproportional warming of the Arctic Ocean and the reduction of the sea ice cover, the risk of an accidental oil spill from ships or future oil exploration is increasing. It is hence important to know how crude oil weathers in this environment and what factors affect oil biodegradation in the Arctic. However, this topic is currently poorly studied. In the 1980s, the Baffin Island Oil Spill (BIOS) project carried out a series of simulated oil spills in the backshore zone of beaches located on Baffin Island in the Canadian High Arctic. In this study two BIOS sites were re-visited, offering the unique opportunity to study the long-term weathering of crude oil under Arctic conditions. Here we show that residual oil remains present at these sites even after almost four decades since the original oiling. Oil at both BIOS sites appears to have attenuated very slowly with estimated loss rates of 1.8-2.7% per year. The presence of residual oil continues to significantly affect sediment microbial communities at the sites as manifested by a significantly decreased diversity, differences in the abundance of microorganisms and an enrichment of putative oil-degrading bacteria in oiled sediments. Reconstructed genomes of putative oil degraders suggest that only a subset is specifically adapted for growth under psychrothermic conditions, further reducing the time for biodegradation during the already short Arctic summers. Altogether, this study shows that crude oil spilled in the Arctic can persist and significantly affect the Arctic ecosystem for a long time, in the order of several decades.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Ecossistema , Canadá , Regiões Árticas , Biodegradação Ambiental
7.
Appl Environ Microbiol ; 88(5): e0215121, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020455

RESUMO

The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1,500 mL) microcosms without nutrient addition using a low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved in the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic-based metagenome-assembled genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed that dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating that the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. IMPORTANCE In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days), whereas exerting insignificant effects in the late stage (50 days), from both substance removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation and clarified their degradation and antioxidation mechanisms. These findings help us to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Metagenoma , Metagenômica , Petróleo/metabolismo , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar/química , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 56(12): 8187-8196, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35658111

RESUMO

Tidal zones providing habitats are particularly vulnerable to microplastic (MP) pollution. In this study, the effects of tidal cycles on the transport of MPs (4-6 µm polyethylene, PE1; 125 µm polyethylene, PE2; and 5-6 µm polytetrafluoroethylene, PFTE) in porous media combined with various environmental and MPs properties were systemically investigated. The results indicated that smaller substrate sizes exhibited higher retention percentages compared to those of larger substrate sizes under different tidal cycles. In terms of the size of MPs, a larger size (same density) was found to result in enhanced retention of MPs in the column. As the number of tidal cycles increased, although the transport of MPs from the substrate to the water phase was enhanced, PE1 was washed out more with the change in water level, compared to PTFE. Additionally, more MPs were retained in the column with the increase of salinity and the decrease of flow velocity under the same tidal cycles. Ultraviolet and seawater aged PE1 showed enhanced transport, while aged PTFE showed enhanced retention under the same tidal cycles. These results can help understand the MP behaviors in the shoreline environment and provide support for future cleanup and sampling in tidal zones.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos/química , Polietileno , Polímeros , Politetrafluoretileno , Água , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(12): 8124-8131, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580303

RESUMO

The biodegradation of dispersed crude oil in the ocean is relatively rapid (a half-life of a few weeks). However, it is often much slower on shorelines, usually attributed to low moisture content, nutrient limitation, and higher oil concentrations in beaches than in dispersed plumes. Another factor may be the increased salinity of the upper intertidal and supratidal zones because these parts of the beach are potentially subject to prolonged evaporation and only intermittent inundation. We have investigated whether such an increase in salinity has inhibitory effects on oil biodegradation in seashores. Lightly weathered Hibernia crude oil was added to beach sand at 1 or 10 mL/kg, and fresh seawater, at salinities of 30, 90, and 160 g/L, was added to 20% saturation. The biodegradation of oil was slower at higher salinities, where the half-life increased from 40 days at 30 g/L salts to 58 and 76 days at 90 and 160 g/L salts, respectively, and adding fertilizers somewhat enhanced oil biodegradation. Increased oil concentration in the sand, from 1 to 10 mL/kg, slowed the half-life by about 10-fold. Consequently, occasional irrigation with fertilization could be a suitable bioremediation strategy for the upper parts of contaminated beaches. However, dispersing oil at sea is probably the most suitable option for the optimal removal of spilled crude oil from the marine environment.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Sais , Areia
10.
Can J Microbiol ; 67(11): 813-826, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34171204

RESUMO

Microbial communities are an important aspect of overall riverine ecology; however, appreciation of the effects of anthropogenic activities on unique riverine microbial niches, and how the collection of these samples affects the observed diversity and community profile is lacking. We analyzed prokaryotic and eukaryotic communities from surface water, biofilms, and suspended load niches along a gradient of oil sands-related contamination in the Athabasca River (Alberta, Canada), with suspended load or particle-associated communities collected either via Kenney Sampler or centrifugation manifold. At the phylum level, different niche communities were highly similar to each other and across locations. However, there were significant differences in the abundance of specific genera among the different niches and across sampling locations. A generalized linear model revealed that use of the Kenney Sampler resulted in more diverse bacterial and eukaryotic suspended load community than centrifugal collection, though suspended load communities collected by any means remained stably diverse across locations. Although there was an influence of water quality parameters on community composition, all sampled sites support diverse bacterial and eukaryotic communities regardless of the degree of contamination, highlighting the need to look beyond ecological diversity as a means of assessing ecological perturbations, and consider collecting samples from multiple niche environments.


Assuntos
Rios , Poluentes Químicos da Água , Alberta , Monitoramento Ambiental , Eucariotos/genética , Mineração , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
11.
J Neurophysiol ; 124(2): 375-387, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639901

RESUMO

The first compartmental computer models of brain neurons using the Rall method predicted novel and unexpected dendrodendritic interactions between mitral and granule cells in the olfactory bulb. We review the models from a 50-year perspective on the work that has challenged, supported, and extended the original proposal that these interactions mediate both lateral inhibition and oscillatory activity, essential steps in the neural basis of olfactory processing and perception. We highlight strategies behind the neurophysiological experiments and the Rall methods that enhance the ability of detailed compartmental modeling to give counterintuitive predictions that lead to deeper insights into neural organization at the synaptic and circuit level. The application of these methods to mechanisms of neurogenesis and plasticity are exciting challenges for the future.


Assuntos
Ondas Encefálicas/fisiologia , Dendritos/fisiologia , Modelos Teóricos , Inibição Neural/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Sinapses/fisiologia , Animais
12.
Environ Microbiol ; 22(8): 3112-3125, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32363711

RESUMO

Intestinal microbial communities from 362 anadromous Arctic char (Salvelinus alpinus) from the high Arctic Kitikmeot region, Nunavut, Canada, were characterized using high-throughput 16S rRNA gene sequencing. The resulting bacterial communities were compared across four seasonal habitats that correspond to different stages of annual migration. Arctic char intestinal communities differed by sampling site, salinity and stages of freshwater residence. Although microbiota from fish sampled in brackish water were broadly consistent with taxa seen in other anadromous salmonids, they were enriched with putative psychrophiles, including the nonluminous gut symbiont Photobacterium iliopiscarium that was detected in >90% of intestinal samples from these waters. Microbiota from freshwater-associated fish were less consistent with results reported for other salmonids, and highly variable, possibly reflecting winter fasting behaviour of these char. We identified microbiota links to age for those fish sampled during the autumn upriver migration, but little impact of the intestinal content and water microbiota on the intestinal community. The strongest driver of intestinal community composition was seasonal habitat, and this finding combined with identification of psychrophiles suggested that water temperature and migratory behaviour are key to understanding the relationship between Arctic char and their symbionts.


Assuntos
Ecossistema , Microbioma Gastrointestinal/genética , Photobacterium/isolamento & purificação , Truta/microbiologia , Animais , Regiões Árticas , Canadá , Água Doce/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Photobacterium/genética , RNA Ribossômico 16S/genética , Estações do Ano , Truta/genética
13.
Cereb Cortex ; 29(1): 1-16, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136113

RESUMO

Piriform cortex (PC) is a 3-layer paleocortex receiving primary afferent input from the olfactory bulb. The past decade has seen significant progress in understanding the synaptic, cellular and functional organization of PC, but PC embryogenesis continues to be enigmatic. Here, using birthdating strategies and clonal analyses, we probed the early development and laminar specificity of neurogenesis/gliogenesis as it relates to the organization of the PC. Our data demonstrate a temporal sequence of laminar-specific neurogenesis following the canonical "inside-out" pattern, with the notable exception of PC Layer II which exhibited an inverse "outside-in" temporal neurogenic pattern. Of interest, we found no evidence of a neurogenic gradient along the anterior to posterior axis, although the timing of neuronal migration and laminar development was delayed rostrally by approximately 24 h. To begin probing if lineage affected cell fate in the PC, we labeled PC neuroblasts using a multicolor technique and analyzed their laminar organization. Our results suggested that PC progenitors were phenotypically committed to reach specific layers early in the development. Collectively, these studies shed new light on the determinants of the laminar specificity of neuronal/glial organization in PC and the likely role of subpopulations of committed progenitors in regulating PC embryogenesis.


Assuntos
Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Córtex Piriforme/citologia , Córtex Piriforme/crescimento & desenvolvimento , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Gravidez
14.
Mol Cell Neurosci ; 98: 82-96, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31200100

RESUMO

The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).


Assuntos
Neurogênese , Tubérculo Olfatório/embriologia , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Camundongos , Bainha de Mielina/metabolismo , Tubérculo Olfatório/citologia , Tubérculo Olfatório/crescimento & desenvolvimento
15.
Environ Microbiol ; 21(7): 2307-2319, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927379

RESUMO

Oil biodegradation has been extensively studied in the wake of the deepwater horizon spill, but the application of dispersant to oil spills in marine environments remains controversial. Here, we report metagenomic (MG) and metatranscriptomic (MT) data mining from microcosm experiments investigating the oil degrading potential of Canadian west and east coasts to estimate the gene abundance and activity of oil degrading bacteria in the presence of dispersant. We found that the addition of dispersant to crude oil mainly favours the abundance of Thalassolituus in the summer and Oleispira in the winter, two key natural oil degrading bacteria. We found a high abundance of genes related not only to n-alkane and aromatics degradation but also associated with transporters, two-component systems, bacterial motility, secretion systems and bacterial chemotaxis.


Assuntos
Biodegradação Ambiental , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Alcanos/metabolismo , Canadá , Metagenoma/genética , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo
16.
Environ Microbiol ; 21(10): 3711-3727, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206918

RESUMO

Microbial metabolism of the thawing organic carbon stores in permafrost results in a positive feedback loop of greenhouse gas emissions. CO2 and CH4 fluxes and the associated microbial communities in Arctic cryosols are important in predicting future warming potential of the Arctic. We demonstrate that topography had an impact on CH4 and CO2 flux at a high Arctic ice-wedge polygon terrain site, with higher CO2 emissions and lower CH4 uptake at troughs compared to polygon interior soils. The pmoA sequencing suggested that USCα cluster of uncultured methanotrophs is likely responsible for observed methane sink. Community profiling revealed distinct assemblages across the terrain at different depths. Deeper soils contained higher abundances of Verrucomicrobia and Gemmatimonadetes, whereas the polygon interior had higher Acidobacteria and lower Betaproteobacteria and Deltaproteobacteria abundances. Genome sequencing of isolates from the terrain revealed presence of carbon cycling genes including ones involved in serine and ribulose monophosphate pathways. A novel hybrid network analysis identified key members that had positive and negative impacts on other species. Operational Taxonomic Units (OTUs) with numerous positive interactions corresponded to Proteobacteria, Candidatus Rokubacteria and Actinobacteria phyla, while Verrucomicrobia and Acidobacteria members had negative impacts on other species. Results indicate that topography and microbial interactions impact community composition.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Microbiota , Pergelissolo/microbiologia , Microbiologia do Solo , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Gases de Efeito Estufa , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Solo
17.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30850431

RESUMO

Western Canada produces large amounts of bitumen, a heavy, highly weathered crude oil. Douglas Channel and Hecate Strait on the coast of British Columbia are two water bodies that may be impacted by a proposed pipeline and marine shipping route for diluted bitumen (dilbit). This study investigated the potential of microbial communities from these waters to mitigate the impacts of a potential dilbit spill. Microcosm experiments were set up with water samples representing different seasons, years, sampling stations, and dilbit blends. While the alkane fraction of the tested dilbit blends was almost completely degraded after 28 days, the majority of the polycyclic aromatic hydrocarbons (PAHs) remained. The addition of the dispersant Corexit 9500A most often had either no effect or an enhancing effect on dilbit degradation. Dilbit-degrading microbial communities were highly variable between seasons, years, and stations, with dilbit type having little impact on community trajectories. Potential oil-degrading genera showed a clear succession pattern and were for the most part recruited from the "rare biosphere." At the community level, dispersant appeared to stimulate an accelerated enrichment of genera typically associated with hydrocarbon degradation, even in dilbit-free controls. This suggests that dispersant-induced growth of hydrocarbon degraders (and not only increased bioavailability of oil-associated hydrocarbons) contributes to the degradation-enhancing effect previously reported for Corexit 9500A.IMPORTANCE Western Canada hosts large petroleum deposits, which ultimately enter the market in the form of dilbit. Tanker-based shipping represents the primary means to transport dilbit to international markets. With anticipated increases in production to meet global energy needs, the risk of a dilbit spill is expected to increase. This study investigated the potential of microbial communities naturally present in the waters of a potential dilbit shipping lane to mitigate the effects of a spill. Here we show that microbial degradation of dilbit was mostly limited to n-alkanes, while the overall concentration of polycyclic aromatic hydrocarbons, which represent the most toxic fraction of dilbit, decreased only slightly within the time frame of our experiments. We further investigated the effect of the oil dispersant Corexit 9500A on microbial dilbit degradation. Our results highlight the fact that dispersant-associated growth stimulation, and not only increased bioavailability of hydrocarbons and inhibition of specific genera, contributes to the overall effect of dispersant addition.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Colúmbia Britânica , Água do Mar/análise
18.
Environ Sci Technol ; 53(21): 12197-12206, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31566367

RESUMO

Increased economic activity in the Arctic may increase the risk of oil spills. Yet, little is known about the degradation of oil spills by solar radiation and the impact of nutrient limitation on oil biodegradation under Arctic conditions. We deployed adsorbents coated with thin oil films for up to 4 months in a fjord in SW Greenland to simulate and investigate in situ biodegradation and photo-oxidation of dispersed oil droplets. Oil compound depletion by dissolution, biodegradation, and photo-oxidation was untangled by gas chromatography-mass spectrometry-based oil fingerprinting. Biodegradation was limited by low nutrient concentrations, reaching 97% removal of nC13-26-alkanes only after 112 days. Sequencing of bacterial DNA showed the slow development of a bacterial biofilm on the oil films predominated by the known oil degrading bacteria Oleispira, Alkanindiges and Cycloclasticus. These taxa could be related to biodegradation of shorter-chain (≤C26) alkanes, longer-chain (≥C16) and branched alkanes, and polycyclic aromatic compounds (PACs), respectively. The combination of biodegradation, dissolution, and photo-oxidation depleted most PACs at substantially faster rates than the biodegradation of alkanes. In Arctic fjords during summer, nutrient limitation may severely delay oil biodegradation, but in the photic zone, photolytic transformation of PACs may play an important role.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Alcanos , Regiões Árticas , Biodegradação Ambiental , Estuários , Groenlândia , Água do Mar , Solubilidade
19.
Proc Natl Acad Sci U S A ; 112(18): 5821-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902488

RESUMO

Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.


Assuntos
Axônios/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Adesão Celular , Diferenciação Celular , Movimento Celular , Eletroporação , Proteína GAP-43/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Camundongos , Mitose , Neurogênese , Neurônios/metabolismo , Neurônios Aferentes/citologia , Odorantes , Bulbo Olfatório/citologia , Nervo Olfatório/citologia , Neurônios Receptores Olfatórios/metabolismo , Olfato/genética , Células-Tronco/citologia , Tamoxifeno/química
20.
Environ Microbiol ; 19(2): 443-458, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27129741

RESUMO

Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under the fluctuating conditions that the sandstone rock would experience during the summer months. We additionally identified genes involved in microbial competition and cooperation within the cryptoendolithic habitat. In contrast, permafrost soils have a lower richness of stress response genes, and instead the metagenome is enriched in genes involved with dormancy and sporulation. The permafrost soils also have a large presence of phage genes and genes involved in the recycling of cellular material. Our results underlie two different habitability conditions under extreme cold and dryness: the permafrost soil which is enriched in traits which emphasize survival and dormancy, rather than growth and activity; and the cryptoendolithic environment that selects for organisms capable of growth under extremely oligotrophic, arid and cold conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities.


Assuntos
Temperatura Baixa , Pergelissolo/microbiologia , Regiões Antárticas , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Clima Desértico , Metagenoma , Metagenômica , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA