Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(7): 2068-2080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859619

RESUMO

PURPOSE: Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS: Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS: Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS: [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Radioisótopos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Zircônio , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 17(5)2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27153060

RESUMO

The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic ß cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), ß cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications.


Assuntos
Diabetes Mellitus Tipo 2/sangue , MicroRNAs/sangue , Animais , Biomarcadores/sangue , Insulina/sangue , Masculino , Ratos , Ratos Zucker
3.
Am J Physiol Cell Physiol ; 306(9): C864-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24573086

RESUMO

Sodium glucose cotransporters (SGLTs) mediate the translocation of carbohydrates across the brush border membrane of different organs such as intestine, kidney, and brain. The human SGLT5 (hSGLT5), in particular, is localized in the kidney were it is responsible for mannose and fructose reabsorption from the glomerular filtrate as confirmed by more recent studies on hSGLT5 knockout mice. Here we characterize the functional properties of hSGLT5 expressed in a stable T-Rex-HEK-293 cell line using biochemical and electrophysiological assays. We confirmed that hSGLT5 is a sodium/mannose transporter that is blocked by phlorizin. Li(+) and H(+) ions were also able to drive mannose transport, and transport was electrogenic. Our results moreover indicate that substrates require a pyranose ring with an axial hydroxyl group (-OH) on carbon 2 (C-2). Compared with Na(+)/glucose cotransport, the level of function of Na(+)/mannose cotransport in rat kidney slices was low.


Assuntos
Rim/metabolismo , Manose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Sódio/metabolismo , Animais , Cátions , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Cinética , Lítio/metabolismo , Potenciais da Membrana , Estrutura Molecular , Florizina/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Proteínas de Transporte de Sódio-Glucose/genética , Transfecção
4.
Adv Ther ; 41(1): 364-378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971653

RESUMO

INTRODUCTION: Accurate predictions of pharmacokinetics and efficacious doses for biologics in humans are critical for selecting appropriate first-in-human starting doses and dose ranges and for estimating clinical material needs and cost of goods. This also impacts clinical feasibility, particularly for subcutaneously administered biologics. METHODS: We performed a comprehensive comparison between predicted and observed clearances and doses in humans for a set of 22 biologic drugs developed at Boehringer Ingelheim (BI) over the last 2 decades. The analysis included biologics across three therapeutic areas comprising a wide variety of modalities: mono- and bispecific monoclonal antibodies (mAbs) and nanobodies and a Fab fragment. RESULTS: Our analysis showed that observed clearances in humans were within twofold of predicted clearances for 17 out of 20 biologics (85%). Six biologics had uncharacteristically high observed human clearances (range 32-280 mL/h) for their respective molecular classes, impacting their clinical developability. For three molecules, molecular characteristics contributed to the high clearance. Clinically selected doses were within twofold of predicted for 58% of projects. With 42% and 25% of projects selecting clinical doses higher than two- or threefold the predicted value, respectively, the importance of better understanding not only the pharmacokinetic (PK) but also the predictivity of pharmacodynamic models is highlighted. CONCLUSIONS: We provide a clinical pharmacology perspective on the commonly accepted twofold range of human clearance predictions as well as the implications of higher than predicted targeted efficacious plasma concentration on clinical development. Finally, an analysis of key success factors for biologics at BI was conducted, which may be relevant for the entire pharmaceutical industry. This is one of the largest retrospective analyses for biologics and provides further evidence that successful predictions of human PK and efficacious dose will be further facilitated by gathering key translational data early in research.


Assuntos
Anticorpos Biespecíficos , Produtos Biológicos , Humanos , Produtos Biológicos/uso terapêutico , Estudos Retrospectivos , Relação Dose-Resposta a Droga
5.
Mol Cancer Ther ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259562

RESUMO

p53 is known as the guardian of the genome and is one of the most important tumor-suppressors. It is inactivated in most tumors, either via tumor protein p53 (TP53) gene mutation or copy number amplification of key negative regulators, e.g., mouse double minute 2 (MDM2). Compounds that bind to the MDM2 protein and disrupt its interaction with p53 restore p53 tumor suppressor activity, thereby promoting cell cycle arrest and apoptosis. Previous clinical experience with MDM2-p53 protein-protein interaction antagonists (MDM2-p53 antagonists) have demonstrated that thrombocytopenia and neutropenia represent on-target dose-limiting toxicities that might restrict their therapeutic utility. Dosing less frequently, while maintaining efficacious exposure, represents an approach to mitigate toxicity and improve the therapeutic window of MDM2-p53 antagonists. However, to achieve this, a molecule possessing excellent potency and ideal pharmacokinetic properties is required. Here, we present the discovery and characterization of brigimadlin (BI 907828), a novel, investigational spiro-oxindole MDM2-p53 antagonist. Brigimadlin exhibited high bioavailability and exposure, as well as dose-linear pharmacokinetics in preclinical models. Brigimadlin treatment restored p53 activity and led to apoptosis induction in preclinical models of TP53 wild-type, MDM2-amplified cancer. Oral administration of brigimadlin in an intermittent dosing schedule induced potent tumor growth inhibition in several TP53 wild-type, MDM2-amplified xenograft models. Exploratory clinical pharmacokinetic studies (NCT03449381) showed high systemic exposure and a long plasma elimination half-life in cancer patients who received oral brigimadlin. These findings support the continued clinical evaluation of brigimadlin in patients with MDM2-amplified cancers, such as dedifferentiated liposarcoma.

6.
MAbs ; 15(1): 2191301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998195

RESUMO

There is considerable interest in the pharmaceutical industry toward development of antibody-based biotherapeutics because they can selectively bind diverse receptors and often possess desirable pharmacology. Here, we studied product characteristics of 89 marketed antibody-based biotherapeutics that were approved from 1986 to mid-2020 by gathering publicly available information. Our analyses revealed major trends in their emergence as the best-selling class of pharmaceuticals. Early on, most therapeutic monoclonal antibodies were developed to treat cancer, with CD20 being the most common target. Thanks to industrialization of antibody manufacturing technologies, their use has now blossomed to include 15 different therapeutic areas and nearly 60 targets, and the field is still growing! Drug manufacturers are solidifying their choices regarding types of antibodies and their molecular formats. IgG1 kappa continues to be the most common molecular format among marketed antibody-based biotherapeutics. Most antibody-based biotherapeutics approved since 2015 are either humanized or fully human, but the data we collected do not show a direct correlation between humanness and reported incidence of anti-drug antibodies. Furthermore, there have also been improvements in terms of drug product stability and high concentration liquid formulations suitable for subcutaneous route of administration, which are being approved more often in recent years. These improvements, however, have not been uniformly adopted across all therapeutic areas, suggesting that multiple options for drug product development are being used to serve diverse therapeutic purposes. Insights gained from this analysis may help us devise better end-to-end antibody-based biotherapeutic drug discovery and development strategies.


Assuntos
Desenvolvimento Industrial , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Injeções Subcutâneas
7.
Clin Lab ; 58(7-8): 787-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22997980

RESUMO

BACKGROUND: To assess the chronic effect of the DPP-4 inhibitor, linagliptin, alone, in combination with exenatide, and during exenatide withdrawal, in diet-induced obese (DIO) rats. METHODS: Female Wistar rats were exposed to a cafeteria diet to induce obesity. Animals were then dosed with vehicle or linagliptin (3 mg/kg PO) orally once-daily for a 28 day period. In a subsequent study, rats received exenatide (either 3 or 30 microg/kg/day) or vehicle by osmotic mini-pump for 28 days. In addition, groups of animals were dosed orally with linagliptin either alone or in combination with a 3 microg/kg/day exenatide dose for the study duration. In a final study, rats were administered exenatide (30 microg/kg/day) or vehicle by osmotic mini-pump for eleven days. Subsequently, exenatide-treated animals were transferred to vehicle or continued exenatide infusion for a further ten days. Animals transferred from exenatide to vehicle were also dosed orally with either vehicle or linagliptin. In all studies, body weight, food and water intake were recorded daily and relevant plasma parameters and carcass composition were determined. RESULTS: In contrast to exenatide, linagliptin did not significantly reduce body weight or carcass fat in DIO rats versus controls. Linagliptin augmented the effect of exenatide to reduce body fat when given in combination but did not affect the body weight response. In rats withdrawn from exenatide, weight regain was observed such that body weight was not significantly different to controls. Linagliptin reduced weight regain after withdrawal of exenatide such that a significant difference from controls was evident. CONCLUSIONS: These data demonstrate that linagliptin does not significantly alter body weight in either untreated or exenatide-treated DIO rats, although it delays weight gain after exenatide withdrawal. This finding may suggest the utility of DPP-4 inhibitors in reducing body weight during periods of weight gain.


Assuntos
Dieta , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Obesidade/tratamento farmacológico , Purinas/uso terapêutico , Quinazolinas/uso terapêutico , Animais , Feminino , Linagliptina , Ratos , Ratos Wistar
8.
ESC Heart Fail ; 8(4): 2580-2590, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960149

RESUMO

AIMS: Despite substantial improvements over the last three decades, heart failure (HF) remains associated with a poor prognosis. The sodium-glucose co-transporter-2 inhibitor empagliflozin demonstrated significant reductions of HF hospitalization in patients with HF independent of the presence or absence of type 2 diabetes mellitus in the EMPEROR-Reduced trial and cardiovascular mortality in the EMPA-REG OUTCOME trial. To further elucidate the mechanisms behind these positive outcomes, this study aims to determine the effects of empagliflozin treatment on cardiac energy metabolism and physiology using magnetic resonance spectroscopy (MRS) and cardiovascular magnetic resonance (CMR). METHODS AND RESULTS: The EMPA-VISION trial is a double-blind, randomized, placebo-controlled, mechanistic study. A maximum of 86 patients with HF with reduced ejection fraction (n = 43, Cohort A) or preserved ejection fraction (n = 43, Cohort B), with or without type 2 diabetes mellitus, will be enrolled. Participants will be randomized 1:1 to receive either 10 mg of empagliflozin or placebo for 12 weeks. Eligible patients will undergo cardiovascular magnetic resonance, resting and dobutamine stress MRS, echocardiograms, cardiopulmonary exercise tests, serum metabolomics, and quality of life questionnaires at baseline and after 12 weeks. The primary endpoint will be the change in resting phosphocreatine-to-adenosine triphosphate ratio, as measured by 31 Phosphorus-MRS. CONCLUSIONS: EMPA-VISION is the first clinical trial assessing the effects of empagliflozin treatment on cardiac energy metabolism in human subjects in vivo. The results will shed light on the mechanistic action of empagliflozin in patients with HF and help to explain the results of the safety and efficacy outcome trials (EMPEROR-Reduced and EMPEROR-Preserved).


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Qualidade de Vida
9.
Biochem J ; 412(2): 359-66, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18298402

RESUMO

In Type 2 diabetes, increased glycogenolysis contributes to the hyperglycaemic state, therefore the inhibition of GP (glycogen phosphorylase), a key glycogenolytic enzyme, is one of the possibilities to lower plasma glucose levels. Following this strategy, a number of GPis (GP inhibitors) have been described. However, certain critical issues are associated with their mode of action, e.g. an impairment of muscle function. The interaction between GP and the liver glycogen targeting subunit (termed G(L)) of PP1 (protein phosphatase 1) has emerged as a new potential anti-diabetic target, as the disruption of this interaction should increase glycogen synthesis, potentially providing an alternative approach to counteract the enhanced glycogenolysis without inhibiting GP activity. We identified an inhibitor of the G(L)-GP interaction (termed G(L)-GPi) and characterized its mechanism of action in comparison with direct GPis. In primary rat hepatocytes, at elevated glucose levels, the G(L)-GPi increased glycogen synthesis similarly to direct GPis. Direct GPis significantly reduced the cellular GP activity, caused a dephosphorylation of the enzyme and decreased the amounts of GP in the glycogen-enriched fraction; the G(L)-GPi did not influence any of these parameters. Both mechanisms increased glycogen accumulation at elevated glucose levels. However, at low glucose levels, only direct GPis led to increased glycogen amounts, whereas the G(L)-GPi allowed the mobilization of glycogen because it did not block the activity of GP. Due to this characteristic, G(L)-GPi in comparison with GPis could offer an advantageous risk/benefit profile circumventing the potential downsides of a complete prevention of glycogen breakdown while retaining glucose-lowering efficacy, suggesting that inhibition of the G(L)-GP interaction may provide an attractive novel approach for rebalancing the disturbed glycogen metabolism in diabetic patients.


Assuntos
Proteínas de Transporte/metabolismo , Glicogênio Fosforilase/metabolismo , Glicogênio/biossíntese , Hepatócitos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Subunidades Proteicas/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Hepatócitos/citologia , Humanos , Masculino , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1 , Subunidades Proteicas/genética , Ratos , Ratos Wistar
10.
PLoS One ; 13(5): e0197849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799853

RESUMO

BACKGROUND: Activation of the AMP-activated protein kinase (AMPK) is an attractive approach for the treatment of type 2 diabetes. AMPK activation reduces glucose levels in animal models of type 2 diabetes by increasing glucose uptake in skeletal muscles and reducing hepatic glucose production. Furthermore, AMPK activation ameliorates hepatic steatosis in animal models. For the clinical development of AMPK activators it is essential to have a reliable target engagement marker for appropriate dose finding and to support proof of clinical principle. While the activation of AMPK by quantification of the phosphorylation of AMPK at Thr172 in target tissues can be assessed pre-clinically, this is not feasible in clinical studies. Therefore, we attempted to identify and translate a peripheral target engagement biomarker downstream of AMPK activation for clinical use in blood samples. METHODS: For pharmacological activation of AMPK, two AMPK activators were synthesized (compound 1 and 2). A compound with structural similarities but no pharmacological effect on AMPK phosphorylation was synthesized as negative control (compound 3). Whole blood from healthy volunteers was incubated with an AMPK activator for up to 6 hours and mRNA sequencing was performed. Additionally, human PBMCs were isolated to evaluate Thr172-phosphorylation of AMPK in Western blots. In order to enable identification of translatable biomarker candidates, blood samples from HanWistar rats treated for two weeks with an AMPK activator were also subjected to mRNA sequencing. Furthermore, concentration-response curves for four biomarker candidates were recorded in human blood samples using Nanostring nCounter technology. Finally, ZDF rats were treated with increasing doses of compound 2 for five weeks to investigate the glucose-lowering efficacy. To investigate changes of mRNA expression of two selected biomarker candidates in this ZDF rat study, qRT-PCR was performed. RESULTS: Pharmacological activation of AMPK in human PBMCs revealed an increase in Thr172-phosphorylation of AMPK, confirming target engagement in these blood cells. RNA sequencing of human blood samples identified 608 deregulated genes after AMPK activation. Additionally, AMPK activation led to deregulation of 367 genes in whole blood from HanWistar rats which mapped to the respective human genes. 22 genes out of the intersection of genes deregulated in both species are proposed as potential translatable target engagement biomarker candidates. The most prominent genes were transmembrane glycoprotein NMB (GPNMB, osteoactivin), calcium-binding protein A9 (S100A9), peptidoglycan recognition protein (PGLYRP1) and Ras homolog gene family, member B (RHOB). Specificity for AMPK was shown by testing inactive compound 3 in HanWistar rats. The exposure-effect relationship for GPNMB was investigated in a subchronic study in diabetic ZDF rats. GPNMB showed a dose-dependent up-regulation both acutely and after subchronic dosing. GPNMB up-regulation correlated with an increased Thr172-phosphorylation of AMPK in liver and quadriceps muscle in rats. CONCLUSION: GPNMB has been identified as a translatable target engagement biomarker for use in clinical studies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Descoberta de Drogas , Terapia de Alvo Molecular , Animais , Biomarcadores/metabolismo , Ativação Enzimática/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Análise de Sequência de RNA , Treonina/metabolismo
11.
FEBS Lett ; 581(30): 5885-90, 2007 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-18061583

RESUMO

Inhibition of the lipid phosphatase SH2-domain containing inositol phosphatase 2 (SHIP2) in L6-C10 muscle cells, in 3T3-L1 adipocytes and in the liver of db/db mice has been shown to ameliorate insulin signal transduction and established SHIP2 as a negative regulator of insulin action. Here we show that SHIP2 inhibition in INS1E insulinoma cells increased Akt, glycogen synthase kinase 3 and extracellular signal-regulated kinases 1 and 2 phosphorylation. SHIP2 inhibition did not prevent palmitate-induced apoptosis, but increased cell proliferation. Our data raise the interesting possibility that SHIP2 inhibition exerts proliferative effects in beta-cells and further support the attractiveness of a specific inhibition of SHIP2 for the treatment of type 2 diabetes.


Assuntos
Insulina/metabolismo , Insulinoma/enzimologia , Insulinoma/patologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Transdução de Sinais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina A/genética , Ciclina A/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes Dominantes , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Insulinoma/genética , Proteínas Mutantes/metabolismo , Ácido Palmítico/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 11(6): e0156346, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253523

RESUMO

The chemical induction of diabetes with STZ has gained popularity because of the relative ease of rendering normal animals diabetic. Insulin substitution is required in STZ-rats in long-term studies to avoid ketoacidosis and consequently loss of animals. Aim of the present studies was to test different insulin preparations and different ways of administration in their ability to reduce blood glucose in STZ-induced diabetic rats. Single dosing of the long-acting insulin analogue glargine was able to dose-dependently reduce blood glucose over 4 h towards normoglycemia in STZ-treated rats. However, this effect was not sustained until 8 h post injection. A more sustained glucose-lowering effect was achieved using insulin-releasing implants. In STZ-rats, 1 insulin implant moderately lowered blood glucose levels 10 days after implantation, while 2 implants induced normoglycemia over the whole day. According to the glucose-lowering effect 1 as well as 2 insulin implants significantly reduced HbA1c measured after 26 days of implantation. In line with the improved glucose homeostasis due to the implants, urinary glucose excretion was also blunted in STZ-treated rats with 2 implants. Since diabetic nephropathy is one of the complications of longterm diabetes, renal function was characterized in the STZ-rat model. Increases in creatinine clearance and urinary albumin excretion resemble early signs of diabetic nephropathy. These functional abnormalities of the kidney could clearly be corrected with insulin-releasing implants 27 days after implantation. The data show that diabetic STZ-rats respond to exogenous insulin with regard to glucose levels as well as kidney parameters and a suitable dose of insulin implants for glucose control was established. This animal model together with the insulin dosing regimen is suitable to address diabetes-induced early diabetic nephropathy and also to study combination therapies with insulin for the treatment of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina de Ação Prolongada/administração & dosagem , Insulina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Composição de Medicamentos , Teste de Tolerância a Glucose , Humanos , Insulina/química , Insulina Glargina/administração & dosagem , Insulina de Ação Prolongada/química , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Ratos
13.
Biochem J ; 382(Pt 2): 471-9, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15167811

RESUMO

The key insulin-regulated gluconeogenic enzyme G6Pase (glucose-6-phosphatase) has an important function in the control of hepatic glucose production. Here we examined the inhibition of G6Pase gene transcription by TNF (tumour necrosis factor) in H4IIE hepatoma cells. TNF decreased dexamethasone/dibtuyryl cAMP-induced G6Pase mRNA levels. TNFalpha, but not insulin, led to rapid activation of NFkappaB (nuclear factor kappaB). The adenoviral overexpression of a dominant negative mutant of IkappaBalpha (inhibitor of NFkappaB alpha) prevented the suppression of G6Pase expression by TNFalpha, but did not affect that by insulin. The regulation of G6Pase by TNF was not mediated by activation of the phosphoinositide 3-kinase/protein kinase B pathway, extracellular-signal-regulated protein kinase or p38 mitogen-activated protein kinase. Reporter gene assays demonstrated a concentration-dependent down-regulation of G6Pase promoter activity by the transient overexpression of NFkappaB. Although two binding sites for NFkappaB were identified within the G6Pase promoter, neither of these sites, nor the insulin response unit or binding sites for Sp proteins, was necessary for the regulation of G6Pase promoter activity by TNFalpha. In conclusion, the data indicate that the activation of NFkappaB is sufficient to suppress G6Pase gene expression, and is required for the regulation by TNFalpha, but not by insulin. We propose that NFkappaB does not act by binding directly to the G6Pase promoter.


Assuntos
Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/genética , NF-kappa B/fisiologia , Fatores de Necrose Tumoral/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Insulina/fisiologia , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Ratos , Elementos de Resposta/genética , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
14.
Regul Pept ; 121(1-3): 19-24, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15256269

RESUMO

The transcription factor FKHR (FOXO1a) is regulated by protein kinase B (PKB) and insulin controls the expression of hepatic genes like glucose-6-phosphatase (G6Pase) at least in part via these proteins. However, insulin is known to activate several pathways and it is therefore difficult to establish which effects of the hormone are attributed to PKB and FKHR signaling. The aim of the present study was the generation of cellular models which allow the specific analysis of molecular events controlled by PKB and FKHR, respectively. We generated two H4IIEC3 rat hepatoma cell lines stably expressing either a hydroxytamoxifen-regulatable form of PKB (myristoylated PKB estrogen receptor chimera; MER-PKB) or FKHR (FKHR estrogen receptor chimera; FKHR-ER) by retroviral infection and determined the regulation of the G6Pase transcript by Northern blotting and enzyme assays. Activation of the regulatable PKB fusion protein almost completely reduced the dexamethasone/cAMP-stimulated G6Pase mRNA levels comparable to the effect of insulin. In contrast, stimulation of FKHR-ER with tamoxifen increased the expression of the dexamethasone/cAMP-induced G6Pase mRNA and the G6Pase enzymatic activity about 2.5- to 3-fold. The present data demonstrate that activation of PKB is sufficient to mimic the effect of insulin on the expression of G6Pase and that FKHR acts as an activator of the G6Pase gene indicating that the established cellular models are suitable for the specific analysis of downstream targets of these signaling molecules. Therefore, these cell systems might serve as useful tools for the development of anti-diabetic drugs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , AMP Cíclico/farmacologia , Proteínas de Ligação a DNA/genética , Dexametasona/farmacologia , Ativação Enzimática , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
15.
Diabetes Metab Syndr Obes ; 7: 265-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061325

RESUMO

The present study assessed the potential of the sodium glucose-linked transporter (SGLT)-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg) for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg) with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes.

16.
FEBS Lett ; 586(3): 248-53, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22212718

RESUMO

Sodium glucose cotransporters (SGLT) actively catalyse carbohydrate transport across cellular membranes. Six of the 12 known SGLT family members have the capacity to bind and/or transport monosaccharides (SGLT-1 to 6); of these, all but SGLT-5 have been characterised. Here we demonstrate that human SGLT-5 is exclusively expressed in the kidney. Four splice variants were detected and the most abundant SGLT-5-mRNA was functionally characterised. SGLT-5 mediates sodium-dependent [(14)C]-α-methyl-D-glucose (AMG) transport that can be inhibited by mannose, fructose, glucose, and galactose. Uptake studies using demonstrated high capacity transport for mannose and fructose and, to a lesser extent, glucose, AMG, and galactose. SGLT-5 mediated mannose, fructose and AMG transport was weakly (µM potency) inhibited by SGLT-2 inhibitors. In summary, we have characterised SGLT-5 as a kidney mannose transporter. Further studies are warranted to explore the physiological role of SGLT-5.


Assuntos
Rim/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Absorção/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células HEK293 , Humanos , Especificidade de Órgãos , Florizina/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/química , Transportador 1 de Glucose-Sódio/genética
17.
Diabetes ; 56(9): 2235-41, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17596404

RESUMO

Type 2 diabetes is characterized by a progressive resistance of peripheral tissues to insulin. Recent data have established the lipid phosphatase SH2 domain-containing inositol phosphatase 2 (SHIP2) as a critical negative regulator of insulin signal transduction. Mutations in the SHIP2 gene are associated with type 2 diabetes. Here, we used hyperglycemic and hyperinsulinemic KKA(y) mice to gain insight into the signaling events and metabolic changes triggered by SHIP2 inhibition in vivo. Liver-specific expression of a dominant-negative SHIP2 mutant in KKA(y) mice increased basal and insulin-stimulated Akt phosphorylation. Protein levels of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase were significantly reduced, and consequently the liver produced less glucose through gluconeogenesis. Furthermore, SHIP2 inhibition improved hepatic glycogen metabolism by modulating the phosphorylation states of glycogen phosphorylase and glycogen synthase, which ultimately increased hepatic glycogen content. Enhanced glucokinase and reduced pyruvate dehydrogenase kinase 4 expression, together with increased plasma triglycerides, indicate improved glycolysis. As a consequence of the insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis, the liver-specific inhibition of SHIP2 improved glucose tolerance and markedly reduced prandial blood glucose levels in KKA(y) mice. These results support the attractiveness of a specific inhibition of SHIP2 for the prevention and/or treatment of type 2 diabetes.


Assuntos
Glicemia/metabolismo , Inibidores Enzimáticos/farmacologia , Gluconeogênese/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Glicólise/fisiologia , Insulina/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Adenoviridae/enzimologia , Adenoviridae/genética , Animais , DNA , Ingestão de Alimentos , Teste de Tolerância a Glucose , Inositol Polifosfato 5-Fosfatases , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Valores de Referência
18.
Biochem Biophys Res Commun ; 338(2): 981-6, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16256938

RESUMO

Liver X receptor (LXR) paralogues alpha and beta (LXRalpha and LXRbeta) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXRalpha or LXRbeta suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional , Animais , Linhagem Celular Tumoral , Receptores X do Fígado , Receptores Nucleares Órfãos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA