Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(4): e2845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922403

RESUMO

Evaluating the effects of anthropogenic pressures on several biodiversity metrics can inform the management and monitoring of biodiversity loss. However, the type of disturbances can lead to different responses in different metrics. In this study, we aimed at disentangling the effects of different types of anthropogenic disturbances on freshwater fish communities. We calculated diversity indices for 1109 stream fish communities across France by computing richness and evenness components for ecological, morphological, and phylogenetic diversity, and used null models to estimate standardized effect sizes. We used generalized linear mixed models to assess the relative effects of environmental and anthropogenic drivers in driving those diversity indices. Our results demonstrated that all diversity indices exhibited significant responses to both climatic conditions and anthropogenic disturbances. While we observed a decrease of ecological and phylogenetic richness with the intensity of disturbance, a weak increase in morphological richness and evenness was apparent. Overall, our results demonstrated the importance of disentangling various types of disturbances when assessing human-induced ecological impacts and highlighted that different facets of diversity are not impacted identically by anthropogenic disturbances in stream fish communities. This calls for further work seeking to integrate biodiversity responses to human disturbances into a multifaceted framework, and could have beneficial implications when planning conservation action in freshwater ecosystems.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Filogenia , Água Doce , Rios , Peixes/fisiologia
2.
J Environ Manage ; 347: 119197, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797520

RESUMO

Due to global changes, e.g., climate change and trade globalization, China is facing an increasingly severe threat from invasive freshwater fish species, which have the potential to cause negative impacts across various aspects and pose significant challenges for their eradication once established. Therefore, prioritizing the understanding of invasive species' potential ranges and their determinants is vital for developing more targeted management strategies. Moreover, it is equally essential to consider the transitory range dynamics of invasive species that reflect changes in habitat availability and accessibility. Here, we used species distribution models (the maximum entropy algorithm) to assess the potential distributions of six notorious invasive fish species (i.e., Coptodon zillii, Cyprinus carpio, Gambusia affinis, Hemiculter leucisculus, Oreochromis mossambicus, and Oreochromis niloticus) in current and future (i.e., the 2030s, 2050s, and 2070s) periods along with their determinants, under two Shared Socio-economic Pathways scenarios (SSP1-2.6 and SSP5-8.5; global climate model: MRI-ESM2-0). Our results showed that the habitat suitability for the six species substantially benefited from temperature conditions (i.e., annual mean temperature or maximum temperature of warmest month). Throughout the given time periods, dramatic range expansions would occur for C. zillii, G. affinis, O. mossambicus, and O. niloticus, ranging from 38.61% to 291.90%. In contrast, the range of C. carpio would change slightly and irregularly, while H. leucisculus would contract marginally, with losses ranging from 1.06% to 12.60%. By the 2070s, species richness of these species would be relatively high in South, Central, and East China and parts of Southwest China. Furthermore, transitory fluctuations in the species ranges for all six species were observed throughout the entire time period (the 2030s-2070s). Given the range shifts for each species during different time periods, as well as time costs and budgets, adaptation strategies should be developed and implemented in the areas where they are most needed in each time period.


Assuntos
Carpas , Espécies Introduzidas , Animais , Ecossistema , China , Mudança Climática
3.
J Environ Manage ; 344: 118374, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331311

RESUMO

Over the past centuries, freshwater fish introductions and extinctions have been the major environmental and ecological crises in various water bodies in China. However, consequences of such crises on freshwater fish biodiversity in China remain only partially or locally studied. Furthermore, identifications of relatively sensitive areas along with stressors (i.e., environmental and anthropogenic drivers) influencing freshwater fish biodiversity patterns are still pending. Taxonomic, functional, and phylogenetic facets of biodiversity can well describe and evaluate the underlying processes affecting freshwater fish biodiversity patterns under different dimensionalities. Here we thus evaluated temporal changes in these facets of freshwater fish biodiversity as well as a new developed biodiversity index, multifaceted changes in fish biodiversity, for over a century at the basin level throughout China using both alpha and beta diversity approaches. We also identified the drivers influencing the changes in fish biodiversity patterns using random forest models. The results showed that fish assemblages in Northwest and Southwest China (e.g., Ili River basin, Tarim basin, and Erhai Lake basin) experienced extreme temporal and multifaceted changes in the facets of biodiversity compared with other regions, and environmental factors (e.g., net primary productivity, average annual precipitation, and unit area) largely drove these changes. Since fish faunas in over 80% of China's water bodies covering more than 80% of China's surface were currently undergoing taxonomic, functional, and phylogenetic homogenization, targeted conservation and management strategies should be proposed and implemented, especially for the areas with relatively high changes in biodiversity.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Animais , Filogenia , Lagos , Peixes , China , Água , Ecossistema
4.
Proc Natl Acad Sci U S A ; 116(27): 13434-13439, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209040

RESUMO

Identifying the drivers and processes that determine globally the geographic range size of species is crucial to understanding the geographic distribution of biodiversity and further predicting the response of species to current global changes. However, these drivers and processes are still poorly understood, and no ecological explanation has emerged yet as preponderant in explaining the extent of species' geographical range. Here, we identify the main drivers of the geographic range size variation in freshwater fishes at global and biogeographic scales and determine how these drivers affect range size both directly and indirectly. We tested the main hypotheses already proposed to explain range size variation, using geographic ranges of 8,147 strictly freshwater fish species (i.e., 63% of all known species). We found that, contrary to terrestrial organisms, for which climate and topography seem preponderant in determining species' range size, the geographic range sizes of freshwater fishes are mostly explained by the species' position within the river network, and by the historical connection among river basins during Quaternary low-sea-level periods. Large-ranged fish species inhabit preferentially lowland areas of river basins, where hydrological connectivity is the highest, and also are found in river basins that were historically connected. The disproportionately high explanatory power of these two drivers suggests that connectivity is the key component of riverine fish geographic range sizes, independent of any other potential driver, and indicates that the accelerated rates in river fragmentation might strongly affect fish species distribution and freshwater biodiversity.


Assuntos
Peixes , Animais , Biodiversidade , Demografia , Ecossistema , Água Doce , Geografia , Hidrologia , Rios
5.
J Environ Manage ; 284: 111998, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540195

RESUMO

Considering local adaptation has been increasingly involved in forecasting species distributions under climate change and the management of species conservation. Herein, we take the critically endangered Chinese giant salamander (Andrias davidianus) that has both a low dispersal ability and distinct population divergence in different regions as an example. Basin-scale models that represent different populations in the Huanghe River Basin (HRB), the Yangtze River Basin (YRB), and the Pearl River Basin (PRB) were established using ensemble species distribution models. The species ranges under the future human population density (HPD) and climate change were predicted, and the range loss was evaluated for local basins in 2050 and 2070. Our results showed that the predominant factors affecting species distributions differed among basins, and the responses of the species occurrence to HPD and climate factors were distinctly different from northern to southern basins. Future HPD changes would be the most influential factor that engenders negative impacts on the species distribution in all three basins, especially in the HRB. Climate change will likely be less prominent in decreasing the species range, excluding in the YRB and PRB under the highest-emissions scenario in 2050. Overall, the high-emissions scenario would more significantly aggravate the negative impacts produced by HPD change in both 2050 and 2070, with maximum losses of species ranges in the HRB, YRB, and PRB of 83.4%, 60.0%, and 53.5%, respectively, under the scenarios of the combined impacts of HPD and climate changes. We proposed adapted conservation policies to effectively protect the habitat of this critically endangered animal in different basins based on the outcomes. Our research addresses the importance of incorporating local adaptation into species distribution modeling to inform conservation and management decisions.


Assuntos
Mudança Climática , Espécies em Perigo de Extinção , Aclimatação , Animais , Conservação dos Recursos Naturais , Ecossistema , Humanos , Rios
6.
Ecol Lett ; 21(11): 1649-1659, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187690

RESUMO

Global spread of non-native species profoundly changed the world biodiversity patterns, but how it translates into functional changes remains unanswered at the world scale. We here show that while in two centuries the number of fish species per river increased on average by 15% in 1569 basins worldwide, the diversity of their functional attributes (i.e. functional richness) increased on average by 150%. The inflation of functional richness was paired with changes in the functional structure of assemblages, with shifts of species position toward the border of the functional space of assemblages (i.e. increased functional divergence). Non-native species moreover caused shifts in functional identity toward higher body sized and less elongated species for most of assemblages throughout the world. Although varying between rivers and biogeographic realms, such changes in the different facets of functional diversity might still increase in the future through increasing species invasion and may further modify ecosystem functioning.


Assuntos
Biodiversidade , Peixes , Espécies Introduzidas , Animais , Ecossistema , Água Doce , Rios
7.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695444

RESUMO

Intraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne river basin, France) to determine hot- and coldspots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness (PA), classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


Assuntos
Conservação dos Recursos Naturais/métodos , Peixes/genética , Variação Genética , Animais , Ecossistema , França
8.
Glob Chang Biol ; 24(9): 4417-4427, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29788536

RESUMO

Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait-based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.


Assuntos
Biota , Ecossistema , Peixes/fisiologia , Filogenia , Animais , França , Água Doce , Modelos Biológicos , Dinâmica Populacional , Estações do Ano
9.
Oecologia ; 179(1): 15-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953116

RESUMO

Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.


Assuntos
Monitoramento Ambiental , Peixes/crescimento & desenvolvimento , Rios , Animais , Monitoramento Ambiental/estatística & dados numéricos , França , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Fatores de Tempo
10.
Ecotoxicol Environ Saf ; 112: 15-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463848

RESUMO

Fish are capable of sensing water-borne chemicals at sub-lethal concentrations. Inadequate behavioral responses to physiological and environmental stimuli owing to adverse effects of aquatic toxicants can have serious implications for survival. In this study we exposed juvenile rainbow trout (Oncorhynchus mykiss) during 5 days to a low-concentration mixture of three co-occurring herbicides: atrazine, linuron and metolachlor, at maximum concentrations of 4.5, 4.9 and 13.4 µg L(-1), respectively. Our hypothesis was that fish behavior - swimming activity and interactions between individuals - would be modified due to exposure to the mixture. We studied these behaviors by observing fish twice-daily throughout the exposure period at 30-s intervals for 5 min, registering the vertical distribution of fish in the water column and the number of agoniztic acts between all individuals. Fish exposed to the mixture of herbicides were hypoactive and spent more time in the lower parts of the aquaria in comparison to non-exposed controls, reflecting inhibited swimming activity. Average swimming height of exposed fish decreased significantly with the number of agoniztic acts, whilst in control groups there was no significant relationship between the two behaviors. Overall, behavior of fish exposed for a short time to the herbicide mixture was altered in comparison to control-fish behavior. The behavioral endpoints chosen here were easily observed, simple to quantify, and of ecological relevance.


Assuntos
Herbicidas/toxicidade , Atividade Motora/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Acetamidas/toxicidade , Animais , Atrazina/toxicidade , Linurona/toxicidade , Distribuição Aleatória , Natação
11.
Ecol Lett ; 17(9): 1130-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039890

RESUMO

The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.


Assuntos
Biodiversidade , Peixes/fisiologia , Água Doce , Modelos Biológicos , Animais , Meio Ambiente
12.
Glob Chang Biol ; 20(10): 3080-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24616088

RESUMO

Species' range shifts in response to ongoing climate change have been widely documented, but although complex spatial patterns in species' responses are expected to be common, comprehensive comparisons of species' ranges over time have undergone little investigation. Here, we outline a modeling framework based on historical and current species distribution records for disentangling different drivers (i.e. climatic vs. nonclimatic) and assessing distinct facets (i.e. colonization, extirpation, persistence, and lags) of species' range shifts. We used extensive monitoring data for stream fish assemblages throughout France to assess range shifts for 32 fish species between an initial period (1980-1992) and a contemporary one (2003-2009). Our results provide strong evidence that the responses of individual species varied considerably and exhibited complex mosaics of spatial rearrangements. By dissociating range shifts in climatically suitable and unsuitable habitats, we demonstrated that patterns in climate-driven colonization and extirpation were less marked than those attributed to nonclimatic drivers, although this situation could rapidly shift in the near future. We also found evidence that range shifts could be related to some species' traits and that the traits involved varied depending on the facet of range shift considered. The persistence of populations in climatically unsuitable areas was greater for short-lived species, whereas the extent of the lag behind climate change was greater for long-lived, restricted-range, and low-elevation species. We further demonstrated that nonclimatic extirpations were primarily related to the size of the species' range, whereas climate-driven extirpations were better explained by thermal tolerance. Thus, the proposed framework demonstrated its potential for markedly improving our understanding of the key processes involved in range shifting and also offers a template for informing management decisions. Conservation strategies would greatly benefit from identifying both the geographical patterns and the species' traits associated with complex modifications of species' distributions in response to global changes.


Assuntos
Ecossistema , Peixes/fisiologia , Animais , Mudança Climática , França , Geografia , Dinâmica Populacional , Rios
13.
Nat Ecol Evol ; 7(7): 1072-1078, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264200

RESUMO

Climate warming can negatively affect the body size of ectothermic organisms and, based on known temperature-size rules, tends to benefit small-bodied organisms. Our understanding of the interactive effects of climate warming and other environmental factors on the temporal changes of body size structure is limited. We quantified the annual trends in size spectra of 583 stream fish communities sampled for more than 20 years across France. The results show that climate warming steepened the slope of the community size spectrum in streams with limited impacts from other human pressures. These changes were caused by increasing abundance of small-bodied individuals and decreasing abundance of large-bodied individuals. However, opposite effects of climate warming on the size spectrum slopes were observed in streams facing high levels of other human pressures. This demonstrates that the effects of temperature on body size structure can depend on other human pressures, disrupting the natural patterns of size spectra in wild communities with potentially strong implications for the fluxes of energy and nutrients in ecosystems.


Assuntos
Ecossistema , Rios , Animais , Humanos , Peixes , Mudança Climática , Temperatura
14.
Sci Total Environ ; 891: 164624, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277043

RESUMO

Overexploitation, habitat fragmentation, and flow alteration are major threats to freshwater biodiversity that can lead to fisheries collapse and species extinction. These threats are particularly alarming in poorly monitored ecosystems where resource use supports the livelihoods of numerous people. The Tonle Sap Lake in Cambodia is such an ecosystem, supporting one of the world's largest freshwater fisheries. Tonle Sap Lake fishes are the focus of indiscriminate harvest affecting species stocks, community composition and food-web structure. Changes in the magnitude and timing of the seasonal flood pulse have also been linked to declines in fish stocks. Yet, changes in fish abundance and species-specific temporal trends remain poorly documented. Analyzing 17 years' time series of fish catch data for 110 species, we show that fish populations have declined by 87.7 %, owing to a statistically significant decline for >74 % species, particularly the largest ones. Despite large variations in species-specific trends - going from locally extinct to >1000 % increase - declines were found across most migratory behaviors, trophic positions or IUCN threat categories, though uncertainty regarding the magnitude of effect precluded us drawing conclusions in some cases. These results, reminiscent of alarming declines in fish stocks in many marine fisheries, provide unequivocal evidence that Tonle Sap fish stocks are increasingly depleted. The consequences of this depletion on ecosystem function are unknown but will undoubtedly affect the livelihoods of millions of people, stressing the need to set-up management strategies aimed to protect both the fishery and its associated diversity. Flow alteration, habitat degradation / fragmentation - especially deforestation of seasonally inundated areas and overharvest - have been reported as major drivers in population dynamics and community structure, highlighting the need for management efforts aimed at preserving the natural flood pulse, protecting flooded forest habitats, and reducing overfishing.


Assuntos
Ecossistema , Pesqueiros , Animais , Conservação dos Recursos Naturais/métodos , Lagos , Peixes
15.
Fish Physiol Biochem ; 38(2): 389-99, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21638008

RESUMO

Climate change is predicted to increase the average water temperature and alter the ecology and physiology of several organisms including fish species. To examine the effects of increased water temperature on freshwater fish reproduction, adult European bullhead Cottus gobio of both genders were maintained under three temperature regimes (T1: 6-10, T2: 10-14 and T3: 14-18°C) and assessed for gonad development (gonadosomatic index-GSI and gonad histology), sex steroids (testosterone-T, 17ß-estradiol-E2 and 11-ketotestosterone-11-KT) and vitellogenin (alkali-labile phosphoprotein phosphorus-ALP) dynamics in December, January, February and March. The results indicate that a 8°C rise in water temperature (T3) deeply disrupted the gonadal maturation in both genders. This observation was associated with the absence of GSI peak from January to March, and low levels of plasma sex steroids compared with T1-exposed fish. Nevertheless, exposure to an increasing temperature of 4°C (T2) appeared to accelerate oogenesis with an early peak value in GSI and level of plasma T recorded in January relative to T1-exposed females. In males, the low GSI, reduced level of plasma 11-KT and the absence of GSI increase from January to March support the deleterious effects of increasing water temperature on spermatogenesis. The findings of the present study suggest that exposure to elevated temperatures within the context of climate warming might affect the reproductive success of C. gobio. Specifically, a 4°C rise in water temperature affects gametogenesis by advancing the spawning, and a complete reproductive failure is observed at an elevated temperature of 8°C.


Assuntos
Peixes/fisiologia , Aquecimento Global , Temperatura Alta , Oogênese , Espermatogênese , Animais , Feminino , Peixes/anatomia & histologia , Hormônios Esteroides Gonadais/sangue , Gônadas/anatomia & histologia , Gônadas/crescimento & desenvolvimento , Masculino , Oócitos/citologia , Fosfoproteínas/metabolismo , Vitelogeninas/sangue
16.
PeerJ ; 10: e12857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228906

RESUMO

BACKGROUND: Population dynamics are driven by a number of biotic (e.g., density-dependence) and abiotic (e.g., climate) factors whose contribution can greatly vary across study systems (i.e., populations). Yet, the extent to which the contribution of these factors varies across populations and between species and whether spatial patterns can be identified has received little attention. METHODS: Here, we used a long-term (1982-2011), broad scale (182 sites distributed across metropolitan France) dataset to study spatial patterns in the population's dynamics of three freshwater fish species presenting contrasted life-histories and patterns of elevation range shifts in recent decades. We used a hierarchical Bayesian approach together with an elasticity analysis to estimate the relative contribution of a set of biotic (e.g., strength of density dependence, recruitment rate) and abiotic (mean and variability of water temperature) factors affecting the site-specific dynamic of two different size classes (0+ and >0+ individuals) for the three species. We then tested whether the local contribution of each factor presented evidence for biogeographical patterns by confronting two non-mutually exclusive hypotheses: the "range-shift" hypothesis that predicts a gradient along elevation or latitude and the "abundant-center" hypothesis that predicts a gradient from the center to the edge of the species' distributional range. RESULTS: Despite contrasted life-histories, the three species displayed similar large-scale patterns in population dynamics with a much stronger contribution of biotic factors over abiotic ones. Yet, the contribution of the different factors strongly varied within distributional ranges and followed distinct spatial patterns. Indeed, while abiotic factors mostly varied along elevation, biotic factors-which disproportionately contributed to population dynamics-varied along both elevation and latitude. CONCLUSIONS: Overall while our results provide stronger support for the range-shift hypothesis, they also highlight the dual effect of distinct factors on spatial patterns in population dynamics and can explain the overall difficulty to find general evidence for geographic gradients in natural populations. We propose that considering the separate contribution of the factors affecting population dynamics could help better understand the drivers of abundance-distribution patterns.


Assuntos
Clima , Ecossistema , Animais , Teorema de Bayes , Água Doce , Dinâmica Populacional , Peixes
17.
J Anim Ecol ; 80(3): 657-67, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21303365

RESUMO

1. Understanding the ecological factors driving the burden and pathogenicity of parasites is challenging. Indeed, the dynamics of host-parasite interactions is driven by factors organized across nested hierarchical levels (e.g. hosts, localities), and indirect effects are expected owing to interactions between levels. 2. In this study, we combined Bayesian multilevel models, path analyses and a model selection procedure to account for these complexities and to decipher the relative effects of host- and environment-related factors on the burden and the pathogenicity of an ectoparasite (Tracheliastes polycolpus) on its fish host (Leuciscus leuciscus). We also tested the year-to-year consistency of the relationships linking these factors to the burden and the pathogenic effects of T. polycolpus. 3. We found significant relationships between the parasite burden and host-related factors: body length and age were positively related to parasite burden and heterozygous hosts displayed a higher parasite burden. In contrast, both host- and environment-related factors were linked to pathogenic effects. Pathogenicity was correlated negatively with host body length and positively with age; this illustrates that some factors (e.g. body length) showed inverse relationships with parasite burden and pathogenicity. Pathogenic effects were stronger in cooler upstream sites and where host density was lower. Path analyses revealed that these relationships between environment-related factors and pathogenic effects were direct and were not indirect relationships mediated by the host characteristics. Finally, we found that the strength and the shape of certain relationships were consistent across years, while they were clearly not for some others. 4. Our study illustrates that considering conjointly causal relationships among factors and the hierarchical structure of host-parasite interactions is appropriate for dissecting the complex links between hosts, parasites and their common environment.


Assuntos
Copépodes/fisiologia , Cyprinidae/parasitologia , Ectoparasitoses , Meio Ambiente , Interações Hospedeiro-Parasita , Fatores Etários , Animais , Teorema de Bayes , Tamanho Corporal , Temperatura Baixa , Copépodes/patogenicidade , Cyprinidae/genética , Cyprinidae/fisiologia , França , Heterozigoto , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Modelos Lineares , Modelos Biológicos , Periodicidade , Densidade Demográfica , Rios/química , Rios/parasitologia
18.
Ecol Lett ; 13(4): 421-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20100241

RESUMO

In this study, we test whether established non-native species induce functional changes in natural assemblages. We combined data on the body size of freshwater fish species and a worldwide data set of native and non-native fish species for 1058 river basins. We show that non-native fish species are significantly larger than their native counterparts and are a non-random subset of the worldwide set of fish species. We further show that the median body size of fish assemblages increases in the course of introductions. These changes are the opposite of those expected under several null models. Introductions shift body size patterns related to several abiotic factors (e.g. glacier coverage and temperature) in a way that modifies latitudinal patterns (i.e. Bergmann's rule), especially in the southern hemisphere. Together, these results show that over just the last two centuries human beings have induced changes in the global biogeography of freshwater fish body size, which could affect ecosystem properties.


Assuntos
Tamanho Corporal , Ecossistema , Peixes , Geografia , Animais , Comportamento de Escolha , Humanos , Camada de Gelo , Modelos Biológicos , Rios , Temperatura
19.
Science ; 370(6520)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243858

RESUMO

Zellweger et al (Reports, 15 May 2020, p. 772) claimed that forest plant communities' response to global warming is primarily controlled by microclimate dynamics. We show that community thermophilization is poorly explained by the underlying components of microclimate, and that global warming primarily controls the climatic lag of plant communities. Deconstructing the underlying components of microclimate provides insights for managers.


Assuntos
Florestas , Microclima , Aquecimento Global , Plantas
20.
Sci Total Environ ; 735: 139543, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485455

RESUMO

The Chinese giant salamander, Andrias davidianus, the world's largest amphibian, is critically endangered and has an extremely unique evolutionary history. Therefore, this species represents a global conservation priority and will be impacted by future climate and human pressures. Understanding the range and response to environmental change of this species is a priority for the identification of targeted conservation activities. We projected future range shifts of the Chinese giant salamander under the independent and combined impacts of climate change and human population density (HPD) variations by using ensemble species distribution models. We further evaluated the sustainability of existing nature reserves and identified priority areas for the mitigation or prevention of such pressures. Both climate change and increasing HPD tended to reduce the species range, with the latter leading to greater range losses and fragmentation of the range. Notably, 65.6%, 18.0% and 18.4% of the range loss were attributed solely to HPD change, solely to climate change and to their overlapping impacts, respectively. Overall, the average total and net losses of the species range were 52.5% and 23.4%, respectively, and HPD and climate changes were responsible for 71.4% and 28.6% of the net losses, respectively. We investigated the stability of the remaining species range and found that half of the nature reserves are likely vulnerable, with 57.1% and 66.7% of them likely to lose their conservation value in 2050 and 2070, respectively. To effectively protect this salamander, conservation policies should address both pressures simultaneously, especially considering the negative impact of human pressures in both contemporary periods and the near future. The species range shifts over space and time projected by this research could help guide long-term surveys and the sustainable conservation of wild habitats and populations of this ancient and endangered amphibian.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Anfíbios , Animais , Ecossistema , Espécies em Perigo de Extinção , Humanos , Urodelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA