Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Basic Res Cardiol ; 118(1): 4, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670288

RESUMO

During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to ß-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Diferenciação Celular/fisiologia , Via de Sinalização Wnt
2.
BMC Biol ; 19(1): 57, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761951

RESUMO

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Transdução de Sinais
3.
Aging Clin Exp Res ; 33(6): 1705-1708, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31606858

RESUMO

Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Few cases are familial (FAD), due to autosomal dominant mutations in presenilin-1 (PS1), presenilin-2 (PS2) or amyloid precursor protein (APP). The three proteins are involved in the generation of amyloid-beta (Aß) peptides, providing genetic support to the hypothesis of Aß pathogenicity. However, clinical trials focused on the Aß pathway failed in their attempt to modify disease progression, suggesting the existence of additional pathogenic mechanisms. Ca2+ dysregulation is a feature of cerebral aging, with an increased frequency and anticipated age of onset in several forms of neurodegeneration, including AD. Interestingly, FAD-linked PS1 and PS2 mutants alter multiple key cellular pathways, including Ca2+ signaling. By generating novel tools for measuring Ca2+ in living cells, and combining different approaches, we showed that FAD-linked PS2 mutants significantly alter cell Ca2+ signaling and brain network activity, as summarized below.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Homeostase , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
4.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576104

RESUMO

Calcium (Ca2+) exerts a pivotal role in controlling both physiological and detrimental cellular processes. This versatility is due to the existence of a cell-specific molecular Ca2+ toolkit and its fine subcellular compartmentalization. Study of the role of Ca2+ in cellular physiopathology greatly benefits from tools capable of quantitatively measuring its dynamic concentration ([Ca2+]) simultaneously within organelles and in the cytosol to correlate localized and global [Ca2+] changes. To this aim, as nucleoplasm Ca2+ changes mirror those of the cytosol, we generated a novel nuclear-targeted version of a Föster resonance energy transfer (FRET)-based Ca2+ probe. In particular, we modified the previously described nuclear Ca2+ sensor, H2BD3cpv, by substituting the donor ECFP with mCerulean3, a brighter and more photostable fluorescent protein. The thorough characterization of this sensor in HeLa cells demonstrated that it significantly improved the brightness and photostability compared to the original probe, thus obtaining a probe suitable for more accurate quantitative Ca2+ measurements. The affinity for Ca2+ was determined in situ. Finally, we successfully applied the new probe to confirm that cytoplasmic and nucleoplasmic Ca2+ levels were similar in both resting conditions and upon cell stimulation. Examples of simultaneous monitoring of Ca2+ signal dynamics in different subcellular compartments in the very same cells are also presented.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fenômenos Biofísicos , Sinalização do Cálcio , Citosol/metabolismo , Células HeLa , Humanos , Cinética
5.
Proc Natl Acad Sci U S A ; 114(26): E5167-E5176, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611221

RESUMO

Key mitochondrial functions such as ATP production, Ca2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔµH+) across the inner membrane. Although several drugs can modulate ΔµH+, their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψm) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca2+ dynamics, and respiratory metabolism. By directly modulating Δψm, the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic ß-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.


Assuntos
Sinalização do Cálcio/fisiologia , Channelrhodopsins/metabolismo , Células Secretoras de Insulina/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Optogenética , Animais , Células HEK293 , Células HeLa , Humanos , Células Secretoras de Insulina/citologia , Consumo de Oxigênio/fisiologia , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722509

RESUMO

Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aß), the proteolytic product of amyloid precursor protein (APP), by ß and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aß accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aß production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aß-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aß42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinalização do Cálcio , Neurônios/metabolismo , Proteína ORAI2/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/patologia , Células HEK293 , Células HeLa , Humanos , Neurônios/patologia
7.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991578

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid ß (Aß) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aß peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Sinalização do Cálcio , Presenilina-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética
8.
Pharmacol Res ; 128: 42-51, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29309902

RESUMO

The endoplasmic reticulum (ER) and the mitochondrial network are two highly interconnected cellular structures. By proteinaceous tethers, specialized membrane domains of the ER are tightly associated with the outer membrane of mitochondria, allowing the assembly of signaling platforms where different cell functions take place or are modulated, such as lipid biosynthesis, Ca2+ homeostasis, inflammation, autophagy and apoptosis. The ER-mitochondria coupling is highly dynamic and contacts between the two organelles can be modified in their number, extension and thickness by different stimuli. Importantly, several pathological conditions, such as cancer, neurodegenerative diseases and metabolic syndromes show alterations in this feature, underlining the key role of ER-mitochondria crosstalk in cell physiology. In this contribution, we will focus on one of the major modulator of ER-mitochondria apposition, Mitofusin 2, discussing the structure of the protein and its debated role on organelles tethering. Moreover, we will critically describe different techniques commonly used to investigate this crucial issue, highlighting their advantages, drawbacks and limits.


Assuntos
Retículo Endoplasmático/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Animais , Humanos , Dinâmica Mitocondrial
9.
Proc Natl Acad Sci U S A ; 112(17): E2174-81, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870285

RESUMO

The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER-mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca(2+) transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca(2+) overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER-mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER-mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Animais , Retículo Endoplasmático/diagnóstico por imagem , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Transporte de Íons/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais , Proteínas Mitocondriais/genética , Ultrassonografia
10.
Sensors (Basel) ; 16(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598166

RESUMO

Calcium ion (Ca(2+)) is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER) represents the major intracellular Ca(2+) store and the free Ca(2+) concentration ([Ca(2+)]) within its lumen ([Ca(2+)]ER) can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca(2+) sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca(2+) probes are plagued by different drawbacks, such as a double dissociation constant (Kd) for Ca(2+), low dynamic range, and an affinity for the cation that is too high for the levels of [Ca(2+)] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET)-based, Cameleon probe, named D4ER, characterized by suitable Ca(2+) affinity and dynamic range for monitoring [Ca(2+)] variations within the ER. As an example, resting [Ca(2+)]ER have been evaluated in a known paradigm of altered ER Ca(2+) homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer's Disease-linked protein Presenilin 2 (PS2). The lower Ca(2+) affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca(2+) content in cells expressing mutated PS2, compared to controls.

12.
J Physiol ; 592(2): 305-12, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23858012

RESUMO

While mitochondrial Ca(2+) homeostasis has been studied for several decades and many of the functional roles of Ca(2+) accumulation within the matrix have been at least partially clarified, the possibility of modulation of the organelle functions by cAMP remains largely unknown. In this contribution we briefly summarize the key aspects of Ca(2+) and cAMP signalling pathways in mitochondria. In particular, we focus on recent findings concerning the discovery of an autonomous cAMP toolkit within the mitochondrial matrix, its crossroad with mitochondrial Ca(2+) signalling and its role in controlling ATP synthesis. The discovery of a cAMP signalling, and the demonstration of a cross-talk between cAMP and Ca(2+) inside mitochondria, open the way to a re-evaluation of these organelles as integrators of multiple second messengers. A description of the main methods presently available to measure Ca(2+) and cAMP in mitochondria of living cells with genetically encoded probes is also presented.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Humanos , Microscopia de Fluorescência/métodos
13.
Acta Histochem ; 125(2): 152001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669254

RESUMO

Cerebellum is devoted to motor coordination and cognitive functions. Endoplasmic reticulum is the largest intracellular calcium store involved in all neuronal functions. Intralumenal calcium binding proteins play a pivotal role in calcium storage and contribute to both calcium release and uptake. Calsequestrin, a key calcium binding protein of sarco-endoplasmic reticulum in skeletal and cardiac muscles, was identified in chicken and fish cerebellum Purkinje cells, but its expression in mammals and human counterpart has not been studied in depth. Aim of the present paper was to investigate expression and localization of Calsequestrin in mammalian cerebellum. Calsequestrin was found to be expressed at low level in cerebellum, but specifically concentrated in Calbindin D28- and zebrin- immunopositive-Purkinje cells. Two additional fundamental calcium store markers, sarco-endoplasmic calcium pump isoform 2, SERCA2, and Inositol-trisphosphate receptor isoform 1, IP3R1, were found to be co-expressed in the region, with some localization peculiarities. In conclusion, a new marker was identified for Purkinje cells in adult mammals, including humans. Such a marker might help in staminal neuronal cells specification and in dissection of still unknown neurodegeneration and physio-pathological effects of dysregulated calcium homeostasis.


Assuntos
Calsequestrina , Células de Purkinje , Animais , Humanos , Células de Purkinje/metabolismo , Calsequestrina/metabolismo , Cálcio/metabolismo , Cerebelo/metabolismo , Proteínas de Ligação ao Cálcio , Mamíferos/metabolismo
14.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551781

RESUMO

Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca2+) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function. In this review, we focused on mitochondrial Ca2+ alterations in AD, their causes and bioenergetic consequences in neuronal and glial cells, summarizing the possible mechanisms linking detrimental mitochondrial Ca2+ signals to neuronal death in different experimental AD models.

15.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670904

RESUMO

Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.

16.
Cell Calcium ; 93: 102321, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310302

RESUMO

Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.


Assuntos
Sinalização do Cálcio , Células/metabolismo , Células/patologia , Mitocôndrias/metabolismo , Yin-Yang , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Homeostase , Humanos
17.
Function (Oxf) ; 2(3): zqab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35330679

RESUMO

Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).


Assuntos
Mitocôndrias , Organelas , Camundongos , Animais , Camundongos Transgênicos , Mitocôndrias/genética , Proteínas de Fluorescência Verde/genética , Organelas/metabolismo , Sinalização do Cálcio , Cálcio da Dieta/metabolismo
18.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494218

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aß) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2-/-) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2-/- neurons show a marked reduction in endoplasmic reticulum-mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2-/- and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sinalização do Cálcio , Mitocôndrias/metabolismo , Presenilina-2/deficiência , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glicólise , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação Oxidativa , Fenótipo , Presenilina-2/metabolismo
19.
Bio Protoc ; 10(3): e3504, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654731

RESUMO

Calcium (Ca2+) imaging aims at investigating the dynamic changes in live cells of its concentration ([Ca2+]) in different pathophysiological conditions. Ca2+ is an ubiquitous and versatile intracellular signal that modulates a large variety of cellular functions thanks to a cell type-specific toolkit and a complex subcellular compartmentalization. Many Ca2+ sensors are presently available (chemical and genetically encoded) that can be specifically targeted to different cellular compartments. Using these probes, it is now possible to monitor Ca2+ dynamics of living cells not only in the cytosol but also within specific organelles. The choice of a specific sensor depends on the experimental design and the spatial and temporal resolution required. Here we describe the use of novel Förster resonance energy transfer (FRET)-based fluorescent Ca2+ probes to dynamically and quantitatively monitor the changes in cytosolic and mitochondrial [Ca2+] in a variety of cell types and experimental conditions. FRET-based sensors have the enormous advantage of being ratiometric, a feature that makes them particularly suitable for quantitative and in vivo applications.

20.
Methods Cell Biol ; 155: 337-368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183967

RESUMO

Calcium (Ca2+) is a universal intracellular messenger capable of governing a plethora of different biological functions. Its versatility is guaranteed on the one hand by a cell type-specific Ca2+ signaling toolkit. On the other hand, the fine compartmentalization of changes in Ca2+ concentration ([Ca2+]) into specific subcellular domains adds a level of complexity, thus generating a variety of signals that can be differentially decoded into specific cellular events. In this context, mitochondrial Ca2+ dynamics plays a central role, by regulating both specific organelle functions (e.g., regulation of substrate oxidation, release of caspase cofactors) and global cellular events (e.g., shaping of cytoplasmic Ca2+ waves). Here we describe a general method for the detection of intramitochondrial [Ca2+] using bioluminescent and fluorescent genetically-encoded Ca2+ indicators (GECIs). We will discuss the characteristics of different GECIs, as well as their strengths, limitations and applications.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/análise , Equorina/metabolismo , Sinalização do Cálcio , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Medições Luminescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA