Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(11): e1007447, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30458055

RESUMO

Regulated degradation of proteins by the 26S proteasome plays important roles in maintenance and signalling in eukaryotic cells. Proteins are marked for degradation by the action of E3 ligases that site-specifically modify their substrates by adding chains of ubiquitin. Innate immune signalling in plants is deeply reliant on the ubiquitin-26S proteasome system. While progress has been made in understanding substrate ubiquitination during plant immunity, how these substrates are processed upon arrival at the proteasome remains unclear. Here we show that specific members of the HECT domain-containing family of ubiquitin protein ligases (UPL) play important roles in proteasomal substrate processing during plant immunity. Mutations in UPL1, UPL3 and UPL5 significantly diminished immune responses activated by the immune hormone salicylic acid (SA). In depth analyses of upl3 mutants indicated that these plants were impaired in reprogramming of nearly the entire SA-induced transcriptome and failed to establish immunity against a hemi-biotrophic pathogen. UPL3 was found to physically interact with the regulatory particle of the proteasome and with other ubiquitin-26S proteasome pathway components. In agreement, we demonstrate that UPL3 enabled proteasomes to form polyubiquitin chains, thereby regulating total cellular polyubiquitination levels. Taken together, our findings suggest that proteasome-associated ubiquitin ligase activity of UPL3 promotes proteasomal processivity and is indispensable for development of plant immunity.


Assuntos
Imunidade Vegetal/imunologia , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligases/genética , Ligases/metabolismo , Imunidade Vegetal/fisiologia , Poliubiquitina/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácido Salicílico/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
2.
Nucleic Acids Res ; 44(4): 1924-36, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26712564

RESUMO

Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.


Assuntos
Adenosina Desaminase/química , Complexos Multiproteicos/química , Proteínas do Fator Nuclear 90/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos/genética , Proteínas do Fator Nuclear 90/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
3.
Nucleic Acids Res ; 43(4): 2424-32, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662605

RESUMO

During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Transposases/química , Motivos de Aminoácidos , Biocatálise , DNA/química , DNA/metabolismo , Clivagem do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Transposases/genética , Transposases/metabolismo
4.
J Biol Chem ; 290(21): 13531-40, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25869132

RESUMO

The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3' base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3' end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Drosophila/enzimologia , Sequências Repetidas Invertidas/genética , Plasmídeos/genética , Transposases/química , Transposases/metabolismo , Adenina/química , Animais , Sequência de Bases , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Enzimológica da Expressão Gênica , Guanina/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Transposases/genética
5.
Sci Adv ; 8(42): eabn4466, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269824

RESUMO

The ubiquitin-proteasome system is vital to hormone-mediated developmental and stress responses in plants. Ubiquitin ligases target hormone-specific transcriptional activators (TAs) for degradation, but how TAs are processed by proteasomes remains unknown. We report that in Arabidopsis, the salicylic acid- and ethylene-responsive TAs, NPR1 and EIN3, are relayed from pathway-specific ubiquitin ligases to proteasome-associated HECT-type UPL3/4 ligases. Activity and stability of NPR1 were regulated by sequential action of three ubiquitin ligases, including UPL3/4, while proteasome processing of EIN3 required physical handover between ethylene-responsive SCFEBF2 and UPL3/4 ligases. Consequently, UPL3/4 controlled extensive hormone-induced developmental and stress-responsive transcriptional programs. Thus, our findings identify unknown ubiquitin ligase relays that terminate with proteasome-associated HECT-type ligases, which may be a universal mechanism for processive degradation of proteasome-targeted TAs and other substrates.

6.
Elife ; 82019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589140

RESUMO

Activation of systemic acquired resistance in plants is associated with transcriptome reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its sacrificial turnover.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Produtos Agrícolas/imunologia , Transcrição Gênica , Ubiquitinação , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27223327

RESUMO

Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Recombinação Genética , Transposases/química , Transposases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA