RESUMO
Assistive devices could promote independent living and support the active and healthy aging of an older population; however, several factors can badly influence the long-term use of new technologies. In this context, this paper presents a two-step methodology called "pre-validation" that aims to identify the factors that can bias the use of new services, thus minimizing the risk of an unsuccessful longer trial. The proposed pre-validation methodology is composed of two main phases that aim to assess the usability and the reliability of the technology assessed in a laboratory environment and the usability, acceptability, user experience, and reliability of the technology in real environments. The tested services include the socialization scenario, in which older adults are better connected to the community via technological solutions (i.e., socialization applications), and the monitoring scenario, which allows for the introduction of timely interventions (technologies involved include environmental monitoring sensors, a telepresence robot, wearable sensors, and a personalized dashboard). The obtained results underline an acceptable usability level (average System Usability Scale score > 65) for the tested technologies (i.e., socialization applications and a telepresence robot). Phase Two also underlines the good acceptability, user experience, and usability of the tested services. The statistical analysis underlines a correlation between the stress related to the use of technology, digital skills, and intention of use, among other factors. Qualitative feedback also remarks on a correlation between older adults with low digital skills and an anxiety about using technology. Positive correlation indexes were highlighted between the trust and usability scores. Eventually, future long-term trials with assistive technology should rely on motivated caregivers, be founded on a strong recruitment process, and should reassure older adultsespecially the ones with low digital literacyabout the use of technology by proposing personalized training and mentoring, if necessary, to increase the trust.
Assuntos
Pilotos , Humanos , Idoso , Reprodutibilidade dos Testes , Envelhecimento , Vida Independente , TecnologiaRESUMO
Many researchers and product developers are striving toward achieving ICT-enabled independence of older adults by setting up Enhanced Living Environments (ELEs). Technological solutions, which are often based on the Internet of Things (IoT), show great potential in providing support for Active Aging. To enhance the quality of life for older adults and overcome challenges in enabling individuals to achieve their full potential in terms of physical, social, and mental well-being, numerous proof-of-concept systems have been built. These systems, often labeled as Ambient Assisted Living (AAL), vary greatly in targeting different user needs. This paper presents our contribution using SmartHabits, which is an intelligent privacy-aware home care assistance system. The novel system comprising smart home-based and cloud-based parts uses machine-learning technology to provide peace of mind to informal caregivers caring for persons living alone. It does so by learning the user's typical daily activity patterns and automatically issuing warnings if an unusual situation is detected. The system was designed and implemented from scratch, building upon existing practices from IoT reference architecture and microservices. The system was deployed in several homes of real users for six months, and we will be sharing our findings in this paper.