RESUMO
Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Transdução de Sinais/fisiologia , Domínios de Homologia de src , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Ligação ProteicaRESUMO
A method for obtaining 1D 13C NMR spectra from natural products or metabolites using proton detection is described. The approach delivers singlets for every 13C signal without conducting any broadband 1H decoupling (CPD) and is based on calculating 13C projections from constant-time HMBC and conventional HSQC experiments, recorded at high digital resolution and processed to pure phases. Paramount to the proposed method is the implication of nonuniform sampling and echo processing. The echo processing produces phase-sensitive 2D CT-HMBC spectra with narrow 13C signal line shapes. Two simple HMBC pulse sequences are utilized with the suppression of homo- and heteronuclear couplings. Due to the removal of the 1H multiplet structure in F1 (no tilt at higher digital resolution), 13C singlets arise. An overall increase in 13C signal-to-noise (SINO) for all types of carbon multiplicities is observed, making the proposed technique superior compared to direct 13C excitation. For otherwise difficult-to-measure quaternary carbon atoms, a SINO enhancement of up to 6 and 12 depending on F1 resolution (3 and 6 Hz/point) is reported. Echo/anti-Echo signal detection cleans up the spectrum. Nonuniform sampling (NUS) lays the groundwork to significantly reduce the total acquisition time. Final 1D 13C projections are obtained by combining the 13C projection from CT HMBC and conventional HSQC. This orthogonal concept of combining the 13C projections from different spectra inherently minimizes the risk of missing 13C cross-peaks by inappropriate setting of long-range nJHC coupling delays and the shortcoming of T2 relaxations. The advantages and some limitations of the concept are discussed.
RESUMO
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Assuntos
Pirazóis , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Pirazóis/química , Benzodioxóis/química , Espectroscopia de Ressonância Magnética , Agregados ProteicosRESUMO
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aß) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aß. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale-Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aß42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aß42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aß by at least a factor of 2. The 1H-15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aß peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aß from an α-helix-dominant to a ß-sheet-dominant structure.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Atorvastatina , Fragmentos de Peptídeos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Atorvastatina/farmacologia , Cálcio/metabolismo , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismoRESUMO
The multiplicity-edited heteronuclear single quantum correlation (ME-HSQC) NMR method is widely used for the structural characterization of marine dissolved organic matter (DOM), which is a complex molecular mixture comprising millions of individual compounds. However, the standard ME-HSQC suffers from significant signal cancellation and subsequent loss of crucial structural information due to the overlap between CH3/CH (positive) and CH2 (negative) cross-peaks in overcrowded regions. This study introduces nonuniform sampling in frequency-reversed ME-HSQC (NUS FR-ME-HSQC), highlighting its remarkable potential for the comprehensive structural characterization of marine DOM. By reversing the frequency of CH2 cross-peaks into an empty region, the FR-ME-HSQC method effectively simplifies the spectra and eliminates signal cancellation. We demonstrate that nonuniform sampling enables the acquisition of comparable spectra in half the time or significantly enhances the sensitivity in time-equivalent spectra. Comparative analysis also identifies vulnerable CH2 cross-peaks in the standard ME-HSQC that coincide with CH3 and CH cross-peaks, resulting in the loss of critical structural details. In contrast, the NUS FR-ME-HSQC retains these missing correlations, enabling in-depth characterization of marine DOM. These findings highlight the potential of NUS FR-ME-HSQC as an advanced NMR technique that effectively addresses challenges such as signal overcrowding and prolonged experimental times, enabling the thorough investigation of complex mixtures with implications in several fields, including chemistry, metabolomics, and environmental sciences. The advantages of NUS FR-ME-HSQC are experimentally demonstrated on two solid-phase-extracted DOM (SPE-DOM) samples from the surface and deep ocean. With this new technology, differences in the composition of DOM from various aquatic environments can be assigned to individual molecules.
RESUMO
The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed aromatic ring system, was unambiguously elucidated by extensive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and 1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi have been suggested.
Assuntos
Combretaceae , Ácido Elágico , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Combretaceae/química , Estrutura MolecularRESUMO
Tony Keller, a pioneer in the field of Nuclear Magnetic Resonance (NMR) spectroscopy, passed away on October 27, 2023, at the age of 86 in Spiez, Switzerland. His work and vision were essential to the development and commercialization of NMR spectrometers for many areas of scientific research.
RESUMO
Anisotropic NMR spectroscopy, revealing residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) has emerged as a powerful tool to determine the configurations of synthetic and complex natural compounds. The deduction of the absolute in addition to the relative configuration is one of the primary goals in the field. Therefore, the investigation of the enantiodiscriminating capabilities of chiral alignment media becomes essential. While RDCs and RCSAs are now used for the determination of the relative configuration routinely, RCSAs have not been measured in chiral alignment media such as chiral liquid crystals. Herein, we present this application by measuring RCSAs for chiral analytes such as indanol and isopinocampheol in the lyotropic liquid crystalline phase of an L-valine derived helically chiral polyacetylenes. We have also demonstrated that a single 1D 13 C-{1 H} NMR spectrum suffices to get the RCSAs circumventing the necessity to acquire two spectra at two alignment conditions.
RESUMO
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplasmic side into the α6-helix of the sensory PASP domain and on the cytoplasmic side into the α1-helix of PASC. PASC has to transmit the signal to the C-terminal kinase domain. A helical linker on the cytoplasmic side connecting TM2 with PASC contains an LxxxLxxxL sequence. The dimeric state of the linker was relieved during fumarate activation of DcuS, indicating structural rearrangements in the linker. Thus, DcuS contains a long α-helical structure reaching from the sensory PASP (α6) domain across the membrane to α1(PASC). Taken together, the results suggest piston-type TM signaling by the TM2 homodimer from PASP across the full TM region, whereas the fumarate-destabilized linker dimer converts the signal on the cytoplasmic side for PASC and kinase regulation.
Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Multimerização Proteica , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Domínios Proteicos , Proteínas Quinases/genéticaRESUMO
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Assuntos
Calmodulina , Teorema de Bayes , Calmodulina/metabolismo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação ProteicaRESUMO
Micrometer-sized objects are widely known to exhibit chemically driven motility in systems away from equilibrium. Experimental observation of reaction-induced motility or enhancement in diffusivity at the much shorter length scale of small molecules is, however, still a matter of debate. Here, we investigate the molecular diffusivity of reactants, catalyst, and product of a model reaction, the copper-catalyzed azide-alkyne cycloaddition click reaction, and develop new NMR diffusion approaches that allow the probing of reaction-induced diffusion enhancement in nanosized molecular systems with higher accuracy than the state of the art. Following two different approaches that enable the accounting of time-dependent concentration changes during NMR experiments, we closely monitored the diffusion coefficient of reaction components during the reaction. The reaction components showed distinct changes in the diffusivity: while the two reactants underwent a time-dependent decrease in their diffusivity, the diffusion coefficient of the product gradually increased and the catalyst showed only slight diffusion enhancement within the range expected for reaction-induced sample heating. The decrease in diffusion coefficient of the alkyne, one of the two reactants of click reaction, was not reproduced during its copper coordination when the second reactant, azide, was absent. Our results do not support the catalysis-induced diffusion enhancement of the components of the click reaction and, instead, point to the role of a relatively large intermediate species within the reaction cycle with diffusivity lower than that of both the reactants and product molecule.
RESUMO
In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our group (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754) and another (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455), Huang and Granick refer to the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. Here we respond to their comments and maintain that no measurable diffusion enhancement was observed during the reaction. We expand on the physical arguments presented in our original JACS Article regarding the appropriate reference state for the diffusion coefficient and present new data showing that the use of other reference states, as suggested by Huang and Granick, will still support our conclusion that the two reactants and one product of the CuAAC reaction do not exhibit boosted mobility during the reaction.
Assuntos
Azidas , Química Click , Alcinos/química , Azidas/química , Catálise , Cobre/química , Reação de CicloadiçãoRESUMO
The voltage-dependent anion channel (VDAC), the most abundant protein in the outer mitochondrial membrane, is responsible for the transport of all ions and metabolites into and out of mitochondria. Larger than any of the ß-barrel structures determined to date by magic-angle spinning (MAS) NMR, but smaller than the size limit of cryo-electron microscopy (cryo-EM), VDAC1's 31 kDa size has long been a bottleneck in determining its structure in a near-native lipid bilayer environment. Using a single two-dimensional (2D) crystalline sample of human VDAC1 in lipids, we applied proton-detected fast magic-angle spinning NMR spectroscopy to determine the arrangement of ß strands. Combining these data with long-range restraints from a spin-labeled sample, chemical shift-based secondary structure prediction, and previous MAS NMR and atomic force microscopy (AFM) data, we determined the channel's structure at a 2.2 Å root-mean-square deviation (RMSD). The structure, a 19-stranded ß-barrel, with an N-terminal α-helix in the pore is in agreement with previous data in detergent, which was questioned due to the potential for the detergent to perturb the protein's functional structure. Using a quintuple mutant implementing the channel's closed state, we found that dynamics are a key element in the protein's gating behavior, as channel closure leads to the destabilization of not only the C-terminal barrel residues but also the α2 helix. We showed that cholesterol, previously shown to reduce the frequency of channel closure, stabilizes the barrel relative to the N-terminal helix. Furthermore, we observed channel closure through steric blockage by a drug shown to selectively bind to the channel, the Bcl2-antisense oligonucleotide G3139.
Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Humanos , Ativação do Canal Iônico , Ligantes , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Tionucleotídeos/química , Tionucleotídeos/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genéticaRESUMO
In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including ß-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-ß-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.
Assuntos
Amiloide , Doenças Neurodegenerativas , Peptídeos Cíclicos , Amiloide/biossíntese , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Conformação Proteica em Folha betaRESUMO
The seaweed Sargassum muticum, collected on the southern coast of Galicia, yielded a tetraprenyltoluquinol chromane meroditerpene compound known as 1b, whose structure is revised. The relative configuration of 1b was determined by J-based configurational methodology combined with an iJ/DP4 statistical analysis and further confirmed by measuring two anisotropic properties: carbon residual chemical shift anisotropies (13C-RCSAs) and one-bond 1H-13C residual dipolar couplings (1DCH-RDCs). The absolute configuration of 1b was deduced by ECD/OR/TD-DFT methods and established as 3R,7S,11R.
Assuntos
Sargassum , Anisotropia , Carbono/química , Sargassum/químicaRESUMO
Three new diterpene alkaloids, (+)-8-epiagelasine T (1), (+)-10-epiagelasine B (2), and (+)-12-hydroxyagelasidine C (3), along with three known compounds, (+)-ent-agelasine F (4), (+)-agelasine B (5), and (+)-agelasidine C (6), were isolated from the sponge Agelas citrina, collected on the coasts of the Yucatán Peninsula (Mexico). Their chemical structures were elucidated by 1D and 2D NMR spectroscopy, HRESIMS techniques, and a comparison with literature data. Although the synthesis of (+)-ent-agelasine F (4) has been previously reported, this is the first time that it was isolated as a natural product. The evaluation of the antimicrobial activity against the Gram-positive pathogens Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis showed that all of them were active, with (+)-10-epiagelasine B (2) being the most active compound with an MIC in the range of 1-8 µg/mL. On the other hand, the Gram-negative pathogenes Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were also evaluated, and only (+)-agelasine B (5) showed a moderate antibacterial activity with a MIC value of 16 µg/mL.
Assuntos
Agelas , Anti-Infecciosos , Agelas/química , Animais , Antibacterianos/química , Anti-Infecciosos/química , Alcaloides Diterpenos , México , Testes de Sensibilidade Microbiana , Estrutura MolecularRESUMO
NMR thermometers are a convenient way to determine the temperature inside the sample of an NMR spectrometer. They rely on signals with strongly temperature-dependent chemical shifts, often of OH groups; 99.8% perdeuterated methanol is an established example which is particularly well suited for modern, high-sensitivity spectrometers, but it is so far calibrated only in the range of 282 to 330 K. In this work, we extend this calibration to the entire liquid range of methanol, 175 to 338 K. Additionally, we use a temperature sensor calibrated traceably to the International Temperature Scale (ITS-90) and accounted for the magnetic field effect on the sensor, yielding a more accurate calibration curve with an uncertainty (2σ) varying between 25 and 190 mK.
Assuntos
Metanol , Termômetros , Calibragem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância MagnéticaRESUMO
Heparins and heparan sulfate polysaccharides are negatively charged glycosaminoglycans and play important roles in cell-to-matrix and cell-to-cell signaling processes. Metal ion binding to heparins alters the conformation of heparins and influences their function. Various experimental techniques have been used to investigate metal ion-heparin interactions, frequently with inconsistent results. Exploiting the quadrupolar 23Na nucleus, we herein develop a 23Na NMR-based competition assay and monitor the binding of divalent Ca2+ and Mg2+ and trivalent Al3+ metal ions to sodium heparin and the consequent release of sodium ions from heparin. The 23Na spin relaxation rates and translational diffusion coefficients are utilized to quantify the metal ion-induced release of sodium ions from heparin. In the case of the Al3+ ion, the complementary approach of 27Al quadrupolar NMR is employed as a direct probe of ion binding to heparin. Our NMR results demonstrate at least two metal ion-binding sites with different affinities on heparin, potentially undergoing dynamic exchange. For the site with lower metal ion binding affinity, the order of Ca2+ > Mg2+ > Al3+ is obtained, in which even the weakly binding Al3+ ion is capable of displacing sodium ions from heparin. Overall, the multinuclear quadrupolar NMR approach employed here can monitor and quantify metal ion binding to heparin and capture different modes of metal ion-heparin binding.
Assuntos
Heparina , Heparitina Sulfato , Heparina/química , Espectroscopia de Ressonância Magnética/métodos , Heparitina Sulfato/metabolismo , Metais/metabolismo , Íons , Sódio/metabolismo , Sítios de LigaçãoRESUMO
Large scale functional motions of molecules are studied experimentally using numerous molecular and biophysics techniques, the data from which are subsequently interpreted using diverse models of Brownian molecular dynamics. To unify all rotational physics techniques and motional models, the frame order tensor - a universal statistical mechanics theory based on the rotational ordering of rigid body frames - is herein formulated. The frame ordering is the fundamental physics that governs how motions modulate rotational molecular physics and it defines the properties and maximum information content encoded in the observable physics. Using the tensor to link residual dipolar couplings and pseudo-contact shifts, two distinct information-rich and atomic-level biophysical measurements from the field of nuclear magnetic resonance spectroscopy, to a number of basic mechanical joint models, a highly dynamic state of calmodulin (CaM) bound to a target peptide in a tightly closed conformation was observed. Intra- and inter-domain motions reveal the CaM complex to be entropically primed for peptide release.
RESUMO
A contribution of α-Synuclein (α-Syn) to etiology of Parkinson´s disease (PD) and Dementia with Lewy bodies (DLB) is currently undisputed, while the impact of the closely related ß-Synuclein (ß-Syn) on these disorders remains enigmatic. ß-Syn has long been considered to be an attenuator of the neurotoxic effects of α-Syn, but in a rodent model of PD ß-Syn induced robust neurodegeneration in dopaminergic neurons of the substantia nigra. Given that dopaminergic nigral neurons are selectively vulnerable to neurodegeneration in PD, we now investigated if dopamine can promote the neurodegenerative potential of ß-Syn. We show that in cultured rodent and human neurons a dopaminergic neurotransmitter phenotype substantially enhanced ß-Syn-induced neurodegeneration, irrespective if dopamine is synthesized within neurons or up-taken from extracellular space. Nuclear magnetic resonance interaction and thioflavin-T incorporation studies demonstrated that dopamine and its oxidized metabolites 3,4-dihydroxyphenylacetaldehyde (DOPAL) and dopaminochrome (DCH) directly interact with ß-Syn, thereby enabling structural and functional modifications. Interaction of DCH with ß-Syn inhibits its aggregation, which might result in increased levels of neurotoxic oligomeric ß-Syn. Since protection of outer mitochondrial membrane integrity prevented the additive neurodegenerative effect of dopamine and ß-Syn, such oligomers might act at a mitochondrial level similar to what is suggested for α-Syn. In conclusion, our results suggest that ß-Syn can play a significant pathophysiological role in etiology of PD through its interaction with dopamine metabolites and thus should be re-considered as a disease-relevant factor, at least for those symptoms of PD that depend on degeneration of nigral dopaminergic neurons.