Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 19(7): 1335-51, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20149097

RESUMO

Colonizing species may often encounter strong selection during the initial stages of adaptation to novel environments. Such selection is particularly likely to act on traits expressed early in development since early survival is necessary for the expression of adaptive phenotypes later in life. Genetic studies of fitness under field conditions, however, seldom include the earliest developmental stages. Using a new set of recombinant inbred lines, we present a study of the genetic basis of fitness variation in Arabidopsis thaliana in which genotypes, environments, and geographic location were manipulated to study total lifetime fitness, beginning with the seed stage. Large-effect quantitative trait loci (QTLs) for fitness changed allele frequency and closely approached 90% in some treatments within a single generation. These QTLs colocated with QTLs for germination phenology when seeds were dispersed following a schedule of a typical winter annual, and they were detected in two geographic locations at different latitudes. Epistatically interacting loci affected both fitness and germination in many cases. QTLs for field germination phenology colocated with known QTLs for primary dormancy induction as assessed in laboratory tests, including the candidate genes DOG1 and DOG6. Therefore fitness, germination phenology, and primary dormancy are genetically associated at the level of specific chromosomal regions and candidate loci. Genes associated with the ability to arrest development at early life stages and assess environmental conditions are thereby likely targets of intense natural selection early in the colonization process.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Germinação/genética , Locos de Características Quantitativas , Seleção Genética , DNA de Plantas/genética , Meio Ambiente , Epistasia Genética , Frequência do Gene , Aptidão Genética , Genótipo , Sementes/genética , Análise de Sequência de DNA
2.
Aerosp Med Hum Perform ; 89(1): 52-57, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233244

RESUMO

INTRODUCTION: The purpose of this study was to reuse available datasets to conduct an analysis of potential predictors of U.S. Air Force aircrew nonavailability in terms of being in "duties not to include flying" (DNIF) status. METHODS: This study was a retrospective cohort analysis of U.S. Air Force aircrew on active duty during the period from 2003-2012. Predictor variables included age, Air Force Specialty Code (AFSC), clinic location, diagnosis, gender, pay grade, and service component. The response variable was DNIF duration. Nonparametric methods were used for the exploratory analysis and parametric methods were used for model building and statistical inference. RESULTS: Out of a set of 783 potential predictor variables, 339 variables were identified from the nonparametric exploratory analysis for inclusion in the parametric analysis. Of these, 54 variables had significant associations with DNIF duration in the final model fitted to the validation data set. The predicted results of this model for DNIF duration had a correlation of 0.45 with the actual number of DNIF days. Predictor variables included age, 6 AFSCs, 7 clinic locations, and 40 primary diagnosis categories. DISCUSSION: Specific demographic (i.e., age), occupational (i.e., AFSC), and health (i.e., clinic location and primary diagnosis category) DNIF drivers were identified. Subsequent research should focus on the application of primary, secondary, and tertiary prevention measures to ameliorate the potential impact of these DNIF drivers where possible.Tvaryanas AP, Griffith C Jr. Modeling predictors of duties not including flying status. Aerosp Med Hum Perform. 2018; 89(1):52-57.


Assuntos
Medicina Aeroespacial/estatística & dados numéricos , Militares/estatística & dados numéricos , Modelos Estatísticos , Retorno ao Trabalho/estatística & dados numéricos , Adulto , Feminino , Humanos , Masculino , Estudos Retrospectivos
3.
Toxics ; 6(3)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223455

RESUMO

Large-scale manufacturing of poly- and perfluorinated compounds in the second half of the 20th century has led to their ubiquity in the environment, and their unique structure has made them persistent contaminants. A recent drinking water advisory level issued by the United States Environmental Protection Agency lowered the advisory level concentration of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from 200 nanograms per liter and 400 nanograms per liter, respectively, to 70 nanograms per liter separately or combined. Small temporal variations in PFOS and PFOA concentrations could be the difference between meeting or exceeding the recommended limit. In this study, newly sampled data from a contaminated military site in Alaska and historical data from former Pease Air Force Base were collected. Data were evaluated to determine if monthly variations within PFOS and PFOA existed. No statistically significant temporal trend was observed in the Alaska data, while the results from Pease, although statistically significant, showed the spread of observed contaminant concentrations around the fitted line is broad (as indicated by the low R² values), indicating that collection date has little value in predicting contaminant concentrations. Though not currently the subject of a US EPA health advisory, data on perfluorobutanesulfonic acid (PFBS), perfluorohexane sulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid (PFNA) were collected for each site and their average concentrations evaluated.

4.
Evolution ; 59(4): 740-57, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15926686

RESUMO

Seasonal germination timing strongly influences lifetime fitness and can affect the ability of plant populations to colonize and persist in new environments. To quantify the influence of seasonal environmental factors on germination and to test whether pleiotropy or close linkage are significant constraints on the evolution of germination in different seasonal conditions, we dispersed novel recombinant genotypes of Arabidopsis thaliana into two geographic locations. To decouple the photoperiod during seed maturation from the postdispersal season that maternal photoperiod predicts, replicates of recombinant inbred lines were grown under short days and long days under controlled conditions, and their seeds were dispersed during June in Kentucky (KY) and during June and November in Rhode Island (RI). We found that postdispersal seasonal conditions influenced germination more strongly than did the photoperiod during seed maturation. Genetic variation was detected for germination responses to all environmental factors. Transgressive segregation created novel germination phenotypes, revealing a potential contribution of hybridization of ecotypes to the evolution of germination. A genetic trade-off in germination percentage across sites indicated that determinants of fitness at or before the germination stage may constrain the geographic range that a given genotype can inhabit. However, germination timing exhibited only weak pleiotropy across treatments, suggesting that different sets of genes contribute to variation in germination behavior in different seasonal conditions and geographic locations. Thus, the genetic potential exists for rapid evolution of appropriate germination responses in novel environments, facilitating colonization across a broad geographic range.


Assuntos
Arabidopsis/fisiologia , Evolução Biológica , Meio Ambiente , Germinação/genética , Germinação/fisiologia , Fenótipo , Estações do Ano , Arabidopsis/genética , Variação Genética , Geografia , Kentucky , Funções Verossimilhança , Fotoperíodo , Rhode Island
5.
Evolution ; 59(4): 758-70, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15926687

RESUMO

Germination timing of Arabidopsis thaliana displays strong plasticity to geographic location and seasonal conditions experienced by seeds. We identified which plastic responses were adaptive using recombinant inbred lines in a field manipulation of geographic location (Kentucky, KY; Rhode Island, RI), maternal photoperiod (14-h and 10-h days), and season of dispersal (June and November). Transgressive segregation created novel genotypes that had either higher fitness or lower fitness in certain environments than either parent. Natural selection on germination timing and its variation explained 72% of the variance in fitness among genotypes in KY, 30% in June-dispersed seeds in RI, but only 4% in November-dispersed seeds in RI. Therefore, natural selection on germination timing is an extremely efficient sieve that can determine which genotypes can persist in some locations, and its efficiency is geographically variable and depends on other aspects of life history. We found no evidence for adaptive responses to maternal photoperiod during seed maturation. We did find adaptive plasticity to season of seed dispersal in RI. Seeds dispersed in June postponed germination, which was adaptive, while seeds dispersed in November accelerated germination, which was also adaptive. We also found maladaptive plasticity to geographic location for seeds dispersed in June, such that seeds dispersed in KY germinated much sooner than the optimum time. Consequently, bet hedging in germination timing was favorable in KY; genotypes with more variation in germination timing had higher fitness because greater variation was associated with postponed germination. Selection on germination timing varied across geographic location, indicating that germination timing can be a critical stage in the establishment of genotypes in new locations. The rate of evolution of germination timing may therefore strongly influence the rate at which species can expand their range.


Assuntos
Adaptação Fisiológica , Arabidopsis/genética , Evolução Biológica , Germinação/genética , Estações do Ano , Sementes/fisiologia , Seleção Genética , Arabidopsis/fisiologia , Genótipo , Geografia , Germinação/fisiologia , Kentucky , Rhode Island , Sementes/genética , Fatores de Tempo
6.
Evolution ; 59(4): 771-85, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15926688

RESUMO

Germination responses to seasonal conditions determine the environment experienced by postgermination life stages, and this ability has potential consequences for the evolution of plant life histories. Using recombinant inbred lines of Arabidopsis thaliana, we tested whether life-history characters exhibited plasticity to germination timing, whether germination timing influenced the strength and mode of natural selection on life-history traits, and whether germination timing influenced the expression of genetic variation for life-history traits. Adult life-history traits exhibited strong plasticity to season of germination, and season of germination significantly altered the strength, mode, and even direction of selection on life-history traits under some conditions. None of the average plastic responses to season of germination or season of dispersal were adaptive, although some genotypes within our sample did exhibit adaptive responses. Thus, recombination between inbred lineages created some novel adaptive genotypes with improved responses to the seasonal timing of germination under some, but not all, conditions. Genetically based variation in germination time tended to augment genetic variances of adult life-history traits, but it did not increase the heritabilities because it also increased environmentally induced variance. Under some conditions, plasticity of life-history traits in response to genetically variable germination timing actually obscured genetic variation for those traits. Therefore, the evolution of germination responses can influence the evolution of life histories in a general manner by altering natural selection on life-history traits and the genetic variation of these traits.


Assuntos
Adaptação Fisiológica , Arabidopsis/genética , Germinação/genética , Fenótipo , Estações do Ano , Seleção Genética , Análise de Variância , Arabidopsis/crescimento & desenvolvimento , Germinação/fisiologia , Kentucky , Rhode Island , Fatores de Tempo
7.
Am J Bot ; 91(6): 837-49, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653439

RESUMO

We used field-collected seeds of Arabidopsis thaliana (Brassicaceae) to simulate a colonization event of plants from diverse locations into a common environment to compare regionally "local" and "foreign" populations of this historically mobile species. Life history varied among regional groups, but most variation was found among populations within regions. While we found significant differences among populations and regional groups for important life-history characters, we did not find significant differences in performance of plants from different populations or regional groups. Rather, we found evidence that differences in life history contributed to the ability of plants from foreign regions to perform comparably to local Kentucky plants. Had plants from different regions not differed in the timing and size of reproduction, we would have seen that Kentucky (local) plants had higher total fitness via greater reproductive success of individuals that survived to reproduce and that Michigan plants would have had the lowest fitness. The populations are comparably adapted to the environment in Kentucky but through different combinations of life-history characters. Therefore, the life-history variation in this mobile species appears to contribute not to fitness differences among populations but rather to success in colonizing new locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA