Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2303491120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549280

RESUMO

The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.


Assuntos
Nascimento Prematuro , Substância Branca , Lactente , Feminino , Humanos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Recém-Nascido Prematuro , Bainha de Mielina , Encéfalo/diagnóstico por imagem
2.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37963768

RESUMO

The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and temporal windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverging spatial and temporal windows across streams, and (3) within early visual areas (V1-V3), both spatial and temporal windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Masculino , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Neurônios , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Tempo , Estimulação Luminosa/métodos
3.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191663

RESUMO

The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.


Assuntos
Julgamento , Imageamento por Ressonância Magnética , Leitura , Humanos , Masculino , Feminino , Julgamento/fisiologia , Adulto Jovem , Adulto , Estimulação Luminosa/métodos , Mapeamento Encefálico , Reconhecimento Visual de Modelos/fisiologia , Semântica , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem
4.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156945

RESUMO

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Assuntos
Bainha de Mielina , Água , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
5.
Cereb Cortex ; 33(6): 2485-2506, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671505

RESUMO

Ventral temporal cortex (VTC) consists of high-level visual regions that are arranged in consistent anatomical locations across individuals. This consistency has led to several hypotheses about the factors that constrain the functional organization of VTC. A prevailing theory is that white matter connections influence the organization of VTC, however, the nature of this constraint is unclear. Here, we test 2 hypotheses: (1) white matter tracts are specific for each category or (2) white matter tracts are specific to cytoarchitectonic areas of VTC. To test these hypotheses, we used diffusion magnetic resonance imaging to identify white matter tracts and functional magnetic resonance imaging to identify category-selective regions in VTC in children and adults. We find that in childhood, white matter connections are linked to cytoarchitecture rather than category-selectivity. In adulthood, however, white matter connections are linked to both cytoarchitecture and category-selectivity. These results suggest a rethinking of the view that category-selective regions in VTC have category-specific white matter connections early in development. Instead, these findings suggest that the neural hardware underlying the processing of categorical stimuli may be more domain-general than previously thought, particularly in childhood.


Assuntos
Substância Branca , Criança , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Lobo Temporal
6.
Neuroimage ; 249: 118900, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021039

RESUMO

How does attention enhance neural representations of goal-relevant stimuli while suppressing representations of ignored stimuli across regions of the brain? While prior studies have shown that attention enhances visual responses, we lack a cohesive understanding of how selective attention modulates visual representations across the brain. Here, we used functional magnetic resonance imaging (fMRI) while participants performed a selective attention task on superimposed stimuli from multiple categories and used a data-driven approach to test how attention affects both decodability of category information and residual correlations (after regressing out stimulus-driven variance) with category-selective regions of ventral temporal cortex (VTC). Our data reveal three main findings. First, when two objects are simultaneously viewed, the category of the attended object can be decoded more readily than the category of the ignored object, with the greatest attentional enhancements observed in occipital and temporal lobes. Second, after accounting for the response to the stimulus, the correlation in the residual brain activity between a cortical region and a category-selective region of VTC was elevated when that region's preferred category was attended vs. ignored, and more so in the right occipital, parietal, and frontal cortices. Third, we found that the stronger the residual correlations between a given region of cortex and VTC, the better visual category information could be decoded from that region. These findings suggest that heightened residual correlations by selective attention may reflect the sharing of information between sensory regions and higher-order cortical regions to provide attentional enhancement of goal-relevant information.


Assuntos
Atenção/fisiologia , Formação de Conceito/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Reconhecimento Facial/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
7.
Cereb Cortex ; 31(1): 603-619, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32968767

RESUMO

Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Occipital/fisiologia , Percepção Visual/fisiologia
8.
Cereb Cortex ; 31(1): 48-61, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954410

RESUMO

The evolution and development of anatomical-functional relationships in the cerebral cortex is of major interest in neuroscience. Here, we leveraged the fact that a functional region selective for visual scenes is located within a sulcus in the medial ventral temporal cortex (VTC) in both humans and macaques to examine the relationship between sulcal depth and place selectivity in the medial VTC across species and age groups. To do so, we acquired anatomical and functional magnetic resonance imaging scans in 9 macaques, 26 human children, and 28 human adults. Our results revealed a strong structural-functional coupling between sulcal depth and place selectivity across age groups and species in which selectivity was strongest near the deepest sulcal point (the sulcal pit). Interestingly, this coupling between sulcal depth and place selectivity strengthens from childhood to adulthood in humans. Morphological analyses suggest that the stabilization of sulcal-functional coupling in adulthood may be due to sulcal deepening and areal expansion with age as well as developmental differences in cortical curvature at the pial, but not the white matter surfaces. Our results implicate sulcal features as functional landmarks in high-level visual cortex and highlight that sulcal-functional relationships in the medial VTC are preserved between macaques and humans despite differences in cortical folding.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Mapeamento Encefálico , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 116(29): 14532-14537, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262811

RESUMO

A hallmark of intergroup biases is the tendency to individuate members of one's own group but process members of other groups categorically. While the consequences of these biases for stereotyping and discrimination are well-documented, their early perceptual underpinnings remain less understood. Here, we investigated the neural mechanisms of this effect by testing whether high-level visual cortex is differentially tuned in its sensitivity to variation in own-race versus other-race faces. Using a functional MRI adaptation paradigm, we measured White participants' habituation to blocks of White and Black faces that parametrically varied in their groupwise similarity. Participants showed a greater tendency to individuate own-race faces in perception, showing both greater release from adaptation to unique identities and increased sensitivity in the adaptation response to physical difference among faces. These group differences emerge in the tuning of early face-selective cortex and mirror behavioral differences in the memory and perception of own- versus other-race faces. Our results suggest that biases for other-race faces emerge at some of the earliest stages of sensory perception.


Assuntos
Adaptação Psicológica/fisiologia , Reconhecimento Facial/fisiologia , Percepção Social , Lobo Temporal/fisiologia , Negro ou Afro-Americano/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Estimulação Luminosa , Racismo/psicologia , Estereotipagem , Lobo Temporal/diagnóstico por imagem , População Branca/psicologia , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 116(41): 20750-20759, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548375

RESUMO

Human cortex appears to thin during childhood development. However, the underlying microstructural mechanisms are unknown. Using functional magnetic resonance imaging (fMRI), quantitative MRI (qMRI), and diffusion MRI (dMRI) in children and adults, we tested what quantitative changes occur to gray and white matter in ventral temporal cortex (VTC) from childhood to adulthood, and how these changes relate to cortical thinning. T1 relaxation time from qMRI and mean diffusivity (MD) from dMRI provide independent and complementary measurements of microstructural properties of gray and white matter tissue. In face- and character-selective regions in lateral VTC, T1 and MD decreased from age 5 to adulthood in mid and deep cortex, as well as in their adjacent white matter. T1 reduction also occurred longitudinally in children's brain regions. T1 and MD decreases 1) were consistent with tissue growth related to myelination, which we verified with adult histological myelin stains, and 2) were correlated with apparent cortical thinning. In contrast, in place-selective cortex in medial VTC, we found no development of T1 or MD after age 5, and thickness was related to cortical morphology. These findings suggest that lateral VTC likely becomes more myelinated from childhood to adulthood, affecting the contrast of MR images and, in turn, the apparent gray-white boundary. These findings are important because they suggest that VTC does not thin during childhood but instead gets more myelinated. Our data have broad ramifications for understanding both typical and atypical brain development using advanced in vivo quantitative measurements and clinical conditions implicating myelin.


Assuntos
Encéfalo/crescimento & desenvolvimento , Substância Cinzenta/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Córtex Visual/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Adulto , Encéfalo/anatomia & histologia , Criança , Pré-Escolar , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Córtex Visual/anatomia & histologia , Córtex Visual/metabolismo , Substância Branca/anatomia & histologia , Substância Branca/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA