Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Xenobiotica ; : 1-16, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058619

RESUMO

The pharmacokinetics, metabolism, excretion, mass balance, and tissue distribution of [14C]aficamten were evaluated following oral administration of an 8 mg/kg dose in Sprague Dawley rats and in a quantitative whole-body autoradiography study in Long Evans rats.[14C]Aficamten accounted for ∼80% and a hydroxylated metabolite (M1) accounted for ∼12% of total radioactivity in plasma over 48-h (AUC0-48). Plasma tmax was 4-h and the t1/2 of total plasma radioactivity was 5.8-h.Tissues showing highest Cmax exposures were myocardium and semitendinosus muscle.Most [14C]aficamten-derived radioactivity was excreted within 48-h post-administration. Mean cumulative recovery in urine and faeces over 168-h was 8.3% and 90.7%, respectively.In urine and bile, unchanged aficamten was detected at <0.1 and <0.2% of dose, respectively; however, based on total radioactivity excreted in urine (8.0%) and bile (51.7%), approximately 60% of dose was absorbed.[14C]Aficamten was metabolised by hydroxylation with subsequent glucuronidation where the most abundant metabolite recovered in bile was M5 (35.2%), the oxygen-linked glucuronide of hydroxylated aficamten (M1a). The major metabolite detected in faeces was a 1,2,4-oxadiazole moiety ring-cleaved metabolite (M18, 35.3%), shown to be formed from the metabolism of M5 in incubations with rat intestinal contents solution.

2.
Xenobiotica ; : 1-15, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39102472

RESUMO

Aficamten, a small molecule selective inhibitor of cardiac myosin, was characterised in preclinical in vitro and in vivo studies.Protein binding in human plasma was 10.4% unbound and ranged from 1.6% to 24.9% unbound across species. Blood-to-plasma ratios ranged from 0.69 to 1.14 across species. Aficamten hepatic clearance in human was predicted to be low from observed high metabolic stability in vitro in human liver microsomes. Aficamten demonstrated high permeability in Caco-2 cell monolayers.Aficamten in vivo clearance was low across species at 8.8, 2.1, 3.3, and 11 mL/min/kg in mouse, rat, dog, and monkey, respectively. The volume of distribution was low-to-high ranging from 0.53 in rat to 11 L/kg in dog. Oral bioavailability ranged from 41% in monkey to 98% in mouse.Aficamten was metabolised in vitro to eight metabolites with hydroxylated metabolites M1a and M1b predominating. CYP phenotyping indicated multiple CYPs (2C8, 2C9, 2D6, and 3A4) contributing to the metabolism of aficamten.Human clearance (1.1 mL/min/kg) and volume of distribution (6.5 L/kg) were predicted using 4-species allometry employing 'rule-of-exponents'. A predicted 69 hour half-life is consistent with observed half-life in human Phase-1.No CYP-based drug-drug interaction liability as a precipitant was predicted for aficamten.

3.
Xenobiotica ; 51(2): 222-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078965

RESUMO

Dilated cardiomyopathy (DCM) is a disease of the myocardium defined by left ventricular enlargement and systolic dysfunction leading to heart failure. Danicamtiv, a new targeted myosin activator designed for the treatment of DCM, was characterised in in vitro and in vivo preclinical studies. Danicamtiv human hepatic clearance was predicted to be 0.5 mL/min/kg from in vitro metabolic stability studies in human hepatocytes. For human, plasma protein binding was moderate with a fraction unbound of 0.16, whole blood-to-plasma partitioning ratio was 0.8, and danicamtiv showed high permeability and no efflux in a Caco-2 cell line. Danicamtiv metabolism pathways in vitro included CYP-mediated amide-cleavage, N-demethylation, as well as isoxazole- and piperidine-ring-opening. Danicamtiv clearance in vivo was low across species with 15.5, 15.3, 1.6, and 5.7 mL/min/kg in mouse, rat, dog, and monkey, respectively. Volume of distribution ranged from 0.24 L/kg in mouse to 1.7 L/kg in rat. Oral bioavailability ranged from 26% in mouse to 108% in dog. Simple allometric scaling prediction of human plasma clearance, volume of distribution, and half-life was 0.64 mL/min/kg, 0.98 L/kg, and 17.7 h, respectively. Danicamtiv preclinical attributes and predicted human pharmacokinetics supported advancement toward clinical development.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Animais , Disponibilidade Biológica , Células CACO-2 , Cães , Hepatócitos , Humanos , Masculino , Camundongos , Microssomos Hepáticos , Miosinas , Ligação Proteica , Ratos
4.
Xenobiotica ; 49(6): 718-733, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30044681

RESUMO

Mavacamten is a small molecule modulator of cardiac myosin designed as an orally administered drug for the treatment of patients with hypertrophic cardiomyopathy. The current study objectives were to assess the preclinical pharmacokinetics of mavacamten for the prediction of human dosing and to establish the potential need for clinical pharmacokinetic studies characterizing drug-drug interaction potential. Mavacamten does not inhibit CYP enzymes, but at high concentrations relative to anticipated therapeutic concentrations induces CYP2B6 and CYP3A4 enzymes in vitro. Mavacamten showed high permeability and low efflux transport across Caco-2 cell membranes. In human hepatocytes, mavacamten was not a substrate for drug transporters OATP, OCT and NTCP. Mavacamten was determined to have minimal drug-drug interaction risk. In vitro mavacamten metabolite profiles included phase I- and phase II-mediated metabolism cross-species. Major pathways included aromatic hydroxylation (M1), aliphatic hydroxylation (M2); N-dealkylation (M6), and glucuronidation of the M1-metabolite (M4). Reaction phenotyping revealed CYPs 2C19 and 3A4/3A5 predominating. Mavacamten demonstrated low clearance, high volume of distribution, long terminal elimination half-life and excellent oral bioavailability cross-species. Simple four-species allometric scaling led to predicted plasma clearance, volume of distribution and half-life of 0.51 mL/min/kg, 9.5 L/kg and 9 days, respectively, in human.


Assuntos
Benzilaminas/farmacocinética , Uracila/análogos & derivados , Animais , Benzilaminas/química , Benzilaminas/metabolismo , Células CACO-2 , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Interações Medicamentosas , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos ICR , Microssomos Hepáticos , Ratos Sprague-Dawley , Uracila/química , Uracila/metabolismo , Uracila/farmacocinética
5.
Bioorg Med Chem Lett ; 24(1): 156-60, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332491

RESUMO

The discovery and optimization of novel N-(3-(1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-4-yloxy)phenyl)benzenesulfonamide GPR119 agonists is described. Modification of the pyridylphthalimide motif of the molecule with R(1)=-Me and R(2)=-(i)Pr substituents, incorporated with a 6-fluoro substitution on the central phenyl ring offered a potent and metabolically stable tool compound 22.


Assuntos
Descoberta de Drogas , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sulfonamidas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Piridinas/química , Piridinas/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/metabolismo
6.
Bioorg Med Chem Lett ; 24(4): 1133-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440299

RESUMO

We describe the discovery and optimization of 5-(2-((1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)oxy)pyridin-4-yl)-1,2,4-oxadiazoles as novel agonists of GPR119. Previously described aniline 2 had suboptimal efficacy in signaling assays using cynomolgus monkey (cyno) GPR119 making evaluation of the target in preclinical models difficult. Replacement of the aniline ring with a tetrahydroquinoline ring constrained the rotation of the aniline C-N bond and gave compounds with increased efficacy on human and cyno receptors. Additional optimization led to the discovery of 10, which possesses higher free fraction in plasma and improved pharmacokinetic properties in rat and cyno compared to 2.


Assuntos
Descoberta de Drogas , Oxidiazóis/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Relação Dose-Resposta a Droga , Humanos , Macaca fascicularis , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Quinolinas/síntese química , Quinolinas/química , Ratos , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 24(13): 2885-91, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24835984

RESUMO

Retinol-Binding Protein 4 (RBP4) is a plasma protein that transports retinol (vitamin A) from the liver to peripheral tissues. This Letter highlights our efforts in discovering the first, to our knowledge, non-retinoid small molecules that bind to RBP4 at the retinol site and reduce serum RBP4 levels in mice, by disrupting the interaction between RBP4 and transthyretin (TTR), a plasma protein that binds RBP4 and protects it from renal excretion. Potent compounds were discovered and optimized quickly from high-throughput screen (HTS) hits utilizing a structure-based approach. Inhibitor co-crystal X-ray structures revealed unique disruptions of RBP4-TTR interactions by our compounds through induced loop conformational changes instead of steric hindrance exemplified by fenretinide. When administered to mice, A1120, a representative compound in the series, showed concentration-dependent retinol and RBP4 lowering.


Assuntos
Descoberta de Drogas , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Vitamina A/sangue
8.
J Med Chem ; 67(10): 7859-7869, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38451215

RESUMO

Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 µM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.


Assuntos
Contração Miocárdica , Troponina , Animais , Masculino , Ratos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Troponina/metabolismo
9.
Drug Metab Dispos ; 41(1): 111-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052971

RESUMO

Ibuprofen is metabolized to chemically reactive acyl glucuronide and S-acyl-CoA metabolites that are proposed to transacylate glutathione (GSH) forming ibuprofen-S-acyl-GSH (I-SG) in vivo. Herein, we report the detection of novel metabolites of ibuprofen, namely ibuprofen-N-acyl-cysteinylglycine (I-N-CG), ibuprofen-N-acyl-cysteine (I-N-C), and the mercapturic acid conjugate, ibuprofen-S-acyl-N-acetylcysteine (I-S-NAC), in urine from an ibuprofen-dosed volunteer. Thus, analysis of ibuprofen-dosed (Advil, 800 mg, Pfizer, Madison, NJ) human urine extracts by sensitive liquid chromatography tandem mass spectrometric detection resulted in the identification of I-N-CG, I-N-C, and I-S-NAC derivatives as minor metabolites (6.0, 1.7, and 0.2 µg excreted 10-hours postadministration, respectively). I-N-CG is proposed to be formed from the degradation of I-SG by γ-glutamyltranspeptidase (γ-GT)-mediated cleavage of the γ-glutamyl group, leading to an unstable ibuprofen-S-acyl-cysteinylglycine (I-S-CG) intermediate that undergoes spontaneous S to N intramolecular rearrangement. Then, dipeptidase-mediated cleavage of glycine from I-N-CG leads to the formation of I-N-C. Treatment of racemic I-SG (100 µM) in vitro with commercially available bovine kidney γ-GT (0.1 units/ml) in buffer at pH 7.4 and 37°C resulted in its complete degradation, yielding (R)- and (S)-I-N-CG after 15 minutes of incubation. In vitro enzyme kinetic studies with bovine kidney γ-GT incubated separately with (R)- and (S)-I-SG isomers revealed no enantioselective degradation. Results from these studies provided evidence that ibuprofen is metabolized in human to reactive transacylating-type intermediates that react with GSH, forming I-SG thioester that, following degradation by γ-GT and dipeptidase enzymes and following S to N intramolecular rearrangement, leads to the urinary excretion of the I-N-CG and I-N-C amide-linked conjugates, respectively.


Assuntos
Glutationa/análogos & derivados , Ibuprofeno/análogos & derivados , gama-Glutamiltransferase/metabolismo , Animais , Bovinos , Cromatografia Líquida , Glutationa/metabolismo , Humanos , Ibuprofeno/metabolismo , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Espectrometria de Massas em Tandem
10.
Bioorg Med Chem Lett ; 23(12): 3609-13, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23648181

RESUMO

We describe the discovery of a series of arylsulfonyl 3-(pyridin-2-yloxy)anilines as GPR119 agonists derived from compound 1. Replacement of the three methyl groups in 1 with metabolically stable moieties led to the identification of compound 34, a potent and efficacious GPR119 agonist with improved pharmacokinetic (PK) properties.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Compostos de Anilina/síntese química , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 23(24): 6625-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24215889

RESUMO

A series of urea based calcimimetics was optimized for potency and oral bioavailability. Crucial to this process was overcoming the poor pharmacokinetic properties of lead thiazole 1. Metabolism-guided modifications, characterized by the use of metabolite identification (ID) and measurement of time dependent inhibition (TDI) of CYP3A4, were essential to finding a compound suitable for oral dosing. Calcimimetic 18 exhibited excellent in vivo potency in a 5/6 nephrectomized rat model and cross-species pharmacokinetics.


Assuntos
Hiperparatireoidismo Secundário/tratamento farmacológico , Tiazóis/química , Tiazóis/uso terapêutico , Ureia/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Meia-Vida , Hiperparatireoidismo Secundário/metabolismo , Hiperparatireoidismo Secundário/patologia , Masculino , Hormônio Paratireóideo/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Tiazóis/farmacocinética
12.
Nat Commun ; 14(1): 193, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635264

RESUMO

The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing neural and liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.


Assuntos
Microfluídica , Engenharia Tecidual , Humanos , Organoides , Hidrogéis , Fígado , Neovascularização Patológica , Impressão Tridimensional , Alicerces Teciduais
13.
Drug Metab Dispos ; 40(8): 1515-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22577085

RESUMO

Carboxylic acid-containing nonsteroidal anti-inflammatory drugs (NSAIDs) can be metabolized to chemically reactive acyl glucuronide and/or S-acyl-CoA thioester metabolites capable of transacylating GSH. We investigated the metabolism of the NSAID mefenamic acid (MFA) to metabolites that transacylate GSH, leading to MFA-S-acyl-GSH thioester (MFA-SG) formation in incubations with rat and human hepatocytes and in vivo in rat bile. Thus, incubation of MFA (1-500 µM) with rat hepatocytes led to the detection of MFA-1-ß-O-acyl glucuronide (MFA-1-ß-O-G), MFA-S-acyl-CoA (MFA-SCoA), and MFA-SG by liquid chromatography-tandem mass spectrometric analysis. The C(max) of MFA-SG (330 nM; 10-min incubation with 100 µM MFA) was 120- to 1400-fold higher than the C(max) of drug S-acyl-GSH adducts detected from studies with other carboxylic acid drugs to date. MFA-SG was also detected in incubations with human hepatocytes, but at much lower concentrations. Inhibition of MFA acyl glucuronidation in rat hepatocytes had no effect on MFA-SG formation, whereas a 58 ± 1.7% inhibition of MFA-SCoA formation led to a corresponding 66 ± 3.5% inhibition of MFA-SG production. Reactivity comparisons with GSH in buffer showed MFA-SCoA to be 80-fold more reactive than MFA-1-ß-O-G forming MFA-SG. MFA-SG was detected in MFA-dosed (100 mg/kg) rat bile, where 17.4 µg was excreted after administration. In summary, MFA exhibited bioactivation in rat and human hepatocytes and in vivo in rat, leading to reactive acylating derivatives that transacylate GSH. The formation of MFA-SG in hepatocytes was shown not to be mediated by reaction with MFA-1-ß-O-G, and not solely by MFA-SCoA, but perhaps also by intermediary MFA-acyl-adenylate formation, which is currently under investigation.


Assuntos
Biotransformação , Glutationa/farmacocinética , Ácido Mefenâmico/farmacocinética , Animais , Cromatografia Líquida , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Ratos , Espectrometria de Massas em Tandem
14.
Drug Metab Dispos ; 39(12): 2387-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21865320

RESUMO

Sandwich-cultured rat hepatocytes are used in drug discovery for pharmacological and toxicological assessment of drug candidates, yet their utility as a functional model for drug transporters has not been fully characterized. To evaluate the system as an in vitro model for drug transport, expression changes of hepatic transporters relative to whole liver and freshly isolated hepatocytes (day 0) were examined by real-time quantitative reverse transcription-polymerase chain reaction for 4 consecutive days of culture. No significant differences in transporter expression levels were observed between freshly isolated hepatocytes and whole liver. Two distinct mRNA profiles were detected over time showing 1) a more than 5-fold decline in levels of uptake transporters such as Na(+)-taurocholate cotransporting polypeptide (Ntcp), organic anion transporter (Oat) 2, organic anion-transporting polypeptide (Oatp) 1a1, Oatp1a4, and Oatp1b2 and 2) a greater than 5-fold increase of efflux transporters P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and multidrug resistance-related proteins (Mrp) 1, 2, 3, and 4. In addition, protein levels and functional activities for selected transporters were also determined. Protein levels for Mrp2, Bcrp, P-gp, Ntcp, and Oatp1a4 corresponded to changes in mRNA. Functional activities of Oatps and Oct1 exhibited a 3- and 4-fold decrease on day 2 and day 4, respectively, relative to that on day 0, whereas a more than 10-fold reduction in Oat2 activity was observed. These results indicate that the cell culture conditions used herein did not provide an optimal environment for expression of all hepatic transporters. Significant time-dependent alterations in basal gene expression patterns of transporters were detected compared with those in liver or freshly isolated hepatocytes. Further work and new strategies are required to improve the validity of this model as an in vitro tool for in vivo drug transport or biliary clearance prediction.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Chem Res Toxicol ; 24(7): 992-1002, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21506562

RESUMO

Aqueous kava root preparations have been consumed in the South Pacific as an apparently safe ceremonial and cultural drink for centuries. However, several reports of hepatotoxicity have been linked to the consumption of kava extracts in Western countries, where mainly ethanolic or acetonic extracts are used. The mechanism of toxicity has not been established, although several theories have been put forward. The composition of the major constituents, the kava lactones, varies according to preparation method and species of kava plant, and thus, the toxicity of the individual lactones has been tested in order to establish whether a single lactone or a certain composition of lactones may be responsible for the increased prevalence of kava-induced hepatotoxicity in Western countries. However, no such conclusion has been made on the basis of current data. Inhibition or induction of the major metabolizing enzymes, which might result in drug interactions, has also gained attention, but ambiguous results have been reported. On the basis of the chemical structures of kava constituents, the formation of reactive metabolites has also been suggested as an explanation of toxicity. Furthermore, skin rash is a side effect in kava consumers, which may be indicative of the formation of reactive metabolites and covalent binding to skin proteins leading to immune-mediated responses. Reactive metabolites of kava lactones have been identified in vitro as glutathione (GSH) conjugates and in vivo as mercapturates excreted in urine. Addition of GSH to kava extracts has been shown to reduce cytotoxicity in vitro, which suggests the presence of inherently reactive constituents. Only a few studies have investigated the toxicity of the minor constituents present in kava extract, such as pipermethystine and the flavokavains, where some have been shown to display higher in vitro cytotoxicity than the lactones. To date, there remains no indisputable reason for the increased prevalence of kava-induced hepatotoxicity in Western countries.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Kava/química , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Exantema/induzido quimicamente , Exantema/patologia , Glutationa/metabolismo , Humanos , Lactonas/efeitos adversos , Lactonas/química , Lactonas/toxicidade , Raízes de Plantas/química
16.
Drug Metab Dispos ; 38(1): 133-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19786506

RESUMO

Flunoxaprofen (FLX) is a chiral nonsteroidal anti-inflammatory drug that was withdrawn from clinical use because of concerns of potential hepatotoxicity. FLX undergoes highly stereoselective chiral inversion mediated through the FLX-S-acyl-CoA thioester (FLX-CoA) in favor of the (R)-(-)-isomer. Acyl-CoA thioester derivatives of acidic drugs are chemically reactive species that are known to transacylate protein nucleophiles and glutathione (GSH). In this study, we investigated the relationship between the stereoselective metabolism of (R)-(-)- and (S)-(+)-FLX to FLX-CoA and the subsequent transacylation of GSH forming FLX-S-acyl-glutathione (FLX-SG) in incubations with rat hepatocytes in suspension. Thus, when hepatocytes (2 million cells/ml) were treated with (R)-(-)- or (S)-(+)-FLX (100 microM), both FLX-CoA and FLX-SG were detected by sensitive liquid chromatography-tandem mass spectrometry techniques. However, these derivatives were observed primarily from (R)-(-)-FLX incubation extracts, for which the formation rates of FLX-CoA and FLX-SG were rapid, reaching maximum concentrations of 42 and 2.8 nM, respectively, after 6 min of incubation. Incubations with (S)-(+)-FLX over 60 min displayed 8.1 and 2.7% as much FLX-CoA and FLX-SG area under the concentration versus time curves, respectively, compared with corresponding incubations with (R)-(-)-FLX. Coincubation of lauric acid (1000 microM) with (R)-(-)-FLX (10 microM) led to the complete inhibition of FLX-CoA formation and a 98% inhibition of FLX-SG formation. Reaction of authentic (R,S)-FLX-CoA (2 microM) with GSH (10 mM) in buffer (pH 7.4, 37 degrees C) showed the quantitative formation of FLX-SG after 3 h of incubation. Together, these results demonstrate the stereoselective transacylation of GSH in hepatocyte incubations containing (R)-(-)-FLX, which is consistent with bioactivation by stereoselective (R)-FLX-CoA formation.


Assuntos
Acil Coenzima A/biossíntese , Benzoxazóis/química , Benzoxazóis/metabolismo , Ésteres/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Compostos de Sulfidrila/metabolismo , Acil Coenzima A/metabolismo , Acilação , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacocinética , Benzoxazóis/farmacocinética , Biocatálise , Biotransformação , Canfanos/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/farmacologia , Ácido Glucurônico/metabolismo , Glutationa/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Ibuprofeno/metabolismo , Cinética , Ácidos Láuricos/farmacologia , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Espectrometria de Massas em Tandem
17.
Drug Metab Dispos ; 37(5): 1073-82, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19196839

RESUMO

Phenylacetic acid (PAA) represents a substructure of a class of nonsteroidal anti-inflammatory carboxylic acid-containing drugs capable of undergoing metabolic activation in the liver to acylcoenzyme A (CoA)- and/or acyl glucuronide-linked metabolites that are proposed to be associated with the formation of immunogenic, and hence potentially hepatotoxic, drug-protein adducts. Herein, we investigated the ability of PAA to undergo phenylacetyl-S-acyl-CoA thioester (PA-CoA)-mediated covalent binding to protein in incubations with freshly isolated rat hepatocytes in suspension. Thus, when hepatocytes were incubated with phenylacetic acid carboxy-(14)C (100 microM) and analyzed for PA-CoA formation and covalent binding of PAA to protein and over a 3-h time period, both PA-CoA formation and covalent binding to protein increased rapidly, reaching 1.3 microM and 291 pmol equivalents/mg protein after 4 and 6 min of incubation, respectively. However, the covalent binding of PAA to protein was reversible and decreased by 72% at the 3-h time point. After 3 h of incubation, PAA was shown to be metabolized primarily to phenylacetyl-glycine amide (84%). No PAA-acyl glucuronide was detected in the incubation extracts. PA-CoA reacted readily with glutathione in buffer, forming PA-S-acyl-glutathione; however, this glutathione conjugate was not detected in hepatocyte incubation extracts. Coincubation of hepatocytes with lauric acid led to a marked inhibition of PA-CoA formation and a corresponding inhibition of covalent binding to protein. SDS-polyacrylamide gel electrophoresis analysis showed the formation of two protein adducts having molecular masses of approximately 29 and approximately 33 kDa. In summary, PA-CoA formation in rat hepatocytes leads to the highly selective, but reversible, covalent binding to hepatocyte proteins, but not to the transacylation of glutathione.


Assuntos
Hepatócitos/metabolismo , Fenilacetatos/metabolismo , Animais , Biotransformação , Separação Celular , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Técnicas In Vitro , Ácidos Láuricos/farmacologia , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/metabolismo , Peso Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
18.
Drug Metab Dispos ; 36(9): 1740-4, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18541695

RESUMO

Diclofenac (2-[2-(2,6-dichlorophenyl)aminophenyl]ethanoic acid), a nonsteroidal antiinflammatory drug, undergoes bioactivation by cytochrome P450 oxidation to chemically reactive metabolites that are capable of reacting with endogenous nucleophiles such as glutathione (GSH) and proteins and that may play a role in the idiosyncratic hepatotoxicity associated with the drug. Here, we investigated the ability of diclofenac to be metabolized to 2-(2,6-dichloro-phenylamino)benzyl-S-thioether glutathione (DPAB-SG) in incubations with rat liver microsomes (RLMs) and human liver microsomes (HLMs) fortified with NADPH and GSH. Thus, after incubation of diclofenac (50 microM) with liver microsomes (1 mg protein/ml), the presence of DPAB-SG was detected in both RLM and HLM incubation extracts by liquid chromatography-tandem mass spectrometry techniques. The formation of DPAB-SG was NADPH-, concentration-, and time-dependent. Coincubation of diclofenac (10 microM) with ketoconazole (1 microM), an inhibitor of cytochrome P450 (P450) 3A4, with HLMs led to a 75% decrease in DPAB-SG formation. However, in contrast, coincubation with the P450 2C9 inhibitor sulfaphenazole (10 microM) or the P450 2D6 inhibitor quinidine (40 microM) led to a 1.9- and 1.6-fold increase in DPAB-SG production, respectively. From these data, we propose that P450 3A4 mediates the oxidative decarboxylation of diclofenac, resulting in the formation of a transient benzylic carbon-centered free radical intermediate that partitions between elimination (o-imine methide production) and recombination (alcohol formation) pathways. The benzyl alcohol intermediate, which was not analyzed for in the present studies, if formed could undergo dehydration to provide a reactive o-imine methide species. The o-imine methide intermediate then is proposed to react covalently with GSH, forming DPAB-SG.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Ácidos Carboxílicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/farmacocinética , Animais , Cromatografia Líquida , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Espectrometria de Massas em Tandem
19.
Drug Metab Dispos ; 36(4): 682-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18187563

RESUMO

A series of studies were conducted to explore the inductive potential of different fibric acid derivatives on the two alternative metabolic activation pathways of 2-phenylpropionic acid (2-PPA) (a model substrate for profen drugs), namely acyl-CoA formation and acyl glucuronidation, in vivo in rats, and to evaluate whether such treatment could potentially modulate the covalent binding of profens to hepatic protein. After administration of a single dose of 2-PPA (130 mg/kg) to rats pretreated with equimolar doses of clofibric acid (160 mg/kg/day), fenofibrate (260 mg/kg/day), or gemfibrozil (180 mg/kg/day) for 7 days, rat livers were collected and analyzed for covalent binding and hepatic levels of the two reactive metabolites over a 2-h period. Results showed that the three fibrates exhibited very different effects on the hepatic levels of 2-PPA-S-acyl CoA (2-PPA-CoA) in vivo, even though all three significantly increased acyl-CoA synthetase activity in vitro in liver homogenate. Treatment with clofibric acid markedly increased the hepatic exposure of 2-PPA-CoA by 2.9-fold and led to a 25% increase (p < 0.05) in covalent binding of 2-PPA to liver protein. In contrast, significant decreases of the hepatic levels of 2-PPA acyl glucuronide and/or 2-PPA-CoA by fenofibrate and gemfibrozil significantly lowered the covalent binding of 2-PPA to hepatic protein. Together, these results suggest that fibrates exhibit markedly different abilities to alter the extent of covalent binding of 2-PPA to hepatic protein by differentially modulating the hepatic exposure of the two reactive metabolites of 2-PPA, namely 2-PPA-CoA thioester and acyl glucuronide.


Assuntos
Ácido Clofíbrico/farmacocinética , Fenilpropionatos/metabolismo , Animais , Biotransformação/efeitos dos fármacos , Biotransformação/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Chem Res Toxicol ; 21(9): 1749-59, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18680316

RESUMO

Ibuprofen is metabolized to chemically reactive ibuprofen-1- O-acyl-glucuronide (I-1- O-G) and ibuprofen- S-acyl-CoA (I-CoA) derivatives, which are proposed to mediate the formation of drug-protein adducts via the transacylation of protein nucleophiles. We examined the ability of ibuprofen to undergo enantioselective metabolism to ibuprofen- S-acyl-glutathione thioester (I-SG) in incubations with rat hepatocytes, where I-CoA formation is known to be highly enantioselective in favor of the (R)-(-)-ibuprofen isomer. We proposed that potential enantioselective transacylation of glutathione forming I-SG in favor of the (R)-(-)-isomer would reveal the importance of acyl-CoA formation, versus acyl glucuronidation, in the generation of reactive transacylating-type intermediates of the drug. Thus, when (R)-(-)- and (S)-(+)-ibuprofen (100 microM) were incubated with hepatocytes, the presence of I-CoA and I-SG was detected in incubation extracts by LC-MS/MS techniques. The formation of I-CoA and I-SG in hepatocyte incubations with (R)-(-)-ibuprofen was rapid and reached maximum concentrations of 2.6 microM and 1.3 nM, respectively, after 8-10 min of incubation. By contrast, incubations with (S)-(+)-ibuprofen resulted in 8% and 3.9% as much I-CoA and I-SG formation, respectively, compared to that in corresponding incubations with the (R)-(-)-isomer. Experiments with a pseudoracemic mixture of (R)-(-)-[3,3,3-(2)H3]- and (S)-(+)-ibuprofen showed that >99% of the I-SG detected in hepatocyte incubations contained deuterium and therefore was derived primarily from (R)-(-)-ibuprofen bioactivation. Inhibition of (R)-(-)-ibuprofen (10 microM) glucuronidation with (-)-borneol (100 microM) led to a 98% decrease in I-1-O-G formation; however, no decrease in I-SG production was observed. Coincubation with pivalic, valproic, or lauric acid (500 microM each) was shown to lead to a significant inhibition of I-CoA formation and a corresponding decrease in I-SG production. Results from these studies demonstrate that the reactive I-CoA derivative, and not the I-1-O-G metabolite, plays a central role in the transacylation of GSH in incubations with rat hepatocytes.


Assuntos
Glutationa/análogos & derivados , Hepatócitos/metabolismo , Ibuprofeno/análogos & derivados , Ibuprofeno/metabolismo , Animais , Canfanos/farmacologia , Cromatografia Líquida , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Glutationa/química , Hepatócitos/química , Ibuprofeno/antagonistas & inibidores , Ibuprofeno/química , Ácidos Láuricos/farmacologia , Masculino , Espectrometria de Massas , Conformação Molecular , Ácidos Pentanoicos/farmacologia , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Ésteres do Ácido Sulfúrico/antagonistas & inibidores , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/metabolismo , Fatores de Tempo , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA