Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
2.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38765997

RESUMO

Mammalian pericentromeric tandem repeats produce long noncoding RNAs (lncRNAs) that are dysregulated in cancer and linked to genomic instability. Identifying the basic molecular characteristics of these lncRNAs and their regulation is important to understanding their biological function. Here, we determine that the Argonaute (Ago) proteins of the RNA interference (RNAi) pathway directly and uniformly repress bidirectional pericentromeric lncRNAs in a Dicer-dependent manner in mouse embryonic and adult stem cells. Ago-dependent and Dicer-dependent autoregulatory small RNAs were identified within pericentromeric lncRNA degradation intermediates. We develop an RNase H cleavage assay to determine the relative proportions and lengths of the pericentromeric lncRNA targets. We find that 5'-phosphate and non-polyadenylated bidirectional pericentromeric lncRNAs are expressed at similar proportions. These lncRNAs can span up to 9 repeats, with transcription from the reverse strand template yielding the longer products. Using pericentromeric repeat RNA reporters, we determine that Ago represses pericentromeric lncRNAs after S phase transcription. Upon loss of Ago, pericentromeric lncRNA dysregulation results in delayed cell cycle progression, a defective mitotic spindle assembly checkpoint (SAC) and genomic instability. These results show that an evolutionarily conserved Ago activity at pericentromeres contributes to mammalian genome stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA