Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38544153

RESUMO

Repeated single-point measurements of thoracic bioimpedance at a single (low) frequency are strongly related to fluid changes during hemodialysis. Extension to semi-continuous measurements may provide longitudinal details in the time pattern of the bioimpedance signal, and multi-frequency measurements may add in-depth information on the distribution between intra- and extracellular fluid. This study aimed to investigate the feasibility of semi-continuous multi-frequency thoracic bioimpedance measurements by a wearable device in hemodialysis patients. Therefore, thoracic bioimpedance was recorded semi-continuously (i.e., every ten minutes) at nine frequencies (8-160 kHz) in 68 patients during two consecutive hemodialysis sessions, complemented by a single-point measurement at home in-between both sessions. On average, the resistance signals increased during both hemodialysis sessions and decreased during the interdialytic interval. The increase during dialysis was larger at 8 kHz (∆ 32.6 Ω during session 1 and ∆ 10 Ω during session 2), compared to 160 kHz (∆ 29.5 Ω during session 1 and ∆ 5.1 Ω during session 2). Whereas the resistance at 8 kHz showed a linear time pattern, the evolution of the resistance at 160 kHz was significantly different (p < 0.0001). Measuring bioimpedance semi-continuously and with a multi-frequency current is a major step forward in the understanding of fluid dynamics in hemodialysis patients. This study paves the road towards remote fluid monitoring.


Assuntos
Diálise Renal , Dispositivos Eletrônicos Vestíveis , Humanos , Estudos de Viabilidade , Impedância Elétrica , Líquido Extracelular
2.
Nephrol Dial Transplant ; 37(11): 2048-2054, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33544863

RESUMO

Bioimpedance spectroscopy (BIS) has proven to be a promising non-invasive technique for fluid monitoring in haemodialysis (HD) patients. While current BIS-based monitoring of pre- and post-dialysis fluid status utilizes benchtop devices, designed for intramural use, advancements in micro-electronics have enabled the development of wearable bioimpedance systems. Wearable systems meanwhile can offer a similar frequency range for current injection as commercially available benchtop devices. This opens opportunities for unobtrusive longitudinal fluid status monitoring, including transcellular fluid shifts, with the ultimate goal of improving fluid management, thereby lowering mortality and improving quality of life for HD patients. Ultra-miniaturized wearable devices can also offer simultaneous acquisition of multiple other parameters, including haemodynamic parameters. Combination of wearable BIS and additional longitudinal multiparametric data may aid in the prevention of both haemodynamic instability as well as fluid overload. The opportunity to also acquire data during interdialytic periods using wearable devices likely will give novel pathophysiological insights and the development of smart (predicting) algorithms could contribute to personalizing dialysis schemes and ultimately to autonomous (nocturnal) home dialysis. This review provides an overview of current research regarding wearable bioimpedance, with special attention to applications in end-stage kidney disease patients. Furthermore, we present an outlook on the future use of wearable bioimpedance within dialysis practice.


Assuntos
Falência Renal Crônica , Desequilíbrio Hidroeletrolítico , Dispositivos Eletrônicos Vestíveis , Humanos , Diálise Renal/métodos , Qualidade de Vida , Falência Renal Crônica/terapia , Falência Renal Crônica/etiologia , Desequilíbrio Hidroeletrolítico/etiologia , Impedância Elétrica
3.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917824

RESUMO

Impedance pneumography has been suggested as an ambulatory technique for the monitoring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to noise sources. It is important that such noisy segments are identified and removed, since they could have a huge impact on the performance of data-driven decision support tools. In this study, we investigated the added value of machine learning algorithms to separate clean from noisy bio-impedance signals. We compared three approaches: a heuristic algorithm, a feature-based classification model (SVM) and a convolutional neural network (CNN). The dataset consists of 47 chronic obstructive pulmonary disease patients who performed an inspiratory threshold loading protocol. During this protocol, their respiration was recorded with a bio-impedance device and a spirometer, which served as a gold standard. Four annotators scored the signals for the presence of artefacts, based on the reference signal. We have shown that the accuracy of both machine learning approaches (SVM: 87.77 ± 2.64% and CNN: 87.20 ± 2.78%) is significantly higher, compared to the heuristic approach (84.69 ± 2.32%). Moreover, no significant differences could be observed between the two machine learning approaches. The feature-based and neural network model obtained a respective AUC of 92.77±2.95% and 92.51±1.74%. These findings show that a data-driven approach could be beneficial for the task of artefact detection in respiratory thoracic bio-impedance signals.


Assuntos
Artefatos , Máquina de Vetores de Suporte , Algoritmos , Impedância Elétrica , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
4.
BMC Nephrol ; 21(1): 264, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652949

RESUMO

BACKGROUND: Haemodialysis (HD) patients are burdened by frequent fluid shifts which amplify their comorbidities. Bioimpedance (bioZ) is a promising technique to monitor changes in fluid status. The aim of this study is to investigate if the thoracic bioZ signal can track fluid changes during a HD session. METHODS: Prevalent patients from a single centre HD unit were monitored during one to six consecutive HD sessions using a wearable multi-frequency thoracic bioZ device. Ultrafiltration volume (UFV) was determined based on the interdialytic weight gain and target dry weight set by clinicians. The correlation between the bioZ signal and UFV was analysed on population level. Additionally regression models were built and validated per dialysis session. RESULTS: 66 patients were included, resulting in a total of 133 HD sessions. Spearman correlation between the thoracic bioZ and UFV showed a significant strong correlation of 0.755 (p < 0.01) on population level. Regression analysis per session revealed a strong relation between the bioZ value and the UFV (R2 = 0.982). The fluid extraction prediction error of the leave-one-out cross validation was very small (56.2 ml [- 121.1-194.1 ml]) across all sessions at all frequencies. CONCLUSIONS: This study demonstrated that thoracic bioZ is strongly correlated with fluid shifts during HD over a large range of UFVs. Furthermore, leave-one-out cross validation is a step towards personalized fluid monitoring during HD and could contribute to the creation of autonomous dialysis.


Assuntos
Água Corporal , Impedância Elétrica , Líquido Extracelular , Líquido Intracelular , Falência Renal Crônica/terapia , Diálise Renal/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
5.
J Med Internet Res ; 22(5): e17326, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432552

RESUMO

BACKGROUND: Cardiac rehabilitation (CR) is known for its beneficial effects on functional capacity and is a key component within current cardiovascular disease management strategies. In addition, a larger increase in functional capacity is accompanied by better clinical outcomes. However, not all patients respond in a similar way to CR. Therefore, a patient-tailored approach to CR could open up the possibility to achieve an optimal increase in functional capacity in every patient. Before treatment can be optimized, the differences in response of patients in terms of cardiac adaptation to exercise should first be understood. In addition, digital biomarkers to steer CR need to be identified. OBJECTIVE: The aim of the study was to investigate the difference in cardiac response between patients characterized by a clear improvement in functional capacity and patients showing only a minor improvement following CR therapy. METHODS: A total of 129 patients in CR performed a 6-minute walking test (6MWT) at baseline and during four consecutive short-term follow-up tests while being equipped with a wearable electrocardiogram (ECG) device. The 6MWTs were used to evaluate functional capacity. Patients were divided into high- and low-response groups, based on the improvement in functional capacity during the CR program. Commonly used heart rate parameters and cardiac digital biomarkers representative of the heart rate behavior during the 6MWT and their evolution over time were investigated. RESULTS: All participating patients improved in functional capacity throughout the CR program (P<.001). The heart rate parameters, which are commonly used in practice, evolved differently for both groups throughout CR. The peak heart rate (HRpeak) from patients in the high-response group increased significantly throughout CR, while no change was observed in the low-response group (F4,92=8.321, P<.001). Similar results were obtained for the recovery heart rate (HRrec) values, which increased significantly over time during every minute of recuperation, for the high-response group (HRrec1: P<.001, HRrec2: P<.001, HRrec3: P<.001, HRrec4: P<.001, and HRrec5: P=.02). The other digital biomarkers showed that the evolution of heart rate behavior during a standardized activity test differed throughout CR between both groups. These digital biomarkers, derived from the continuous measurements, contribute to more in-depth insight into the progression of patients' cardiac responses. CONCLUSIONS: This study showed that when using wearable sensor technology, the differences in response of patients to CR can be characterized by means of commonly used heart rate parameters and digital biomarkers that are representative of cardiac response to exercise. These digital biomarkers, derived by innovative analysis techniques, allow for more in-depth insights into the cardiac response of cardiac patients during standardized activity. These results open up the possibility to optimized and more patient-tailored treatment strategies and to potentially improve CR outcome.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais/métodos , Reabilitação Cardíaca/métodos , Qualidade de Vida/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Sensors (Basel) ; 20(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352643

RESUMO

Reliable and diverse labeled reference data are essential for the development of high-quality processing algorithms for medical signals, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Here, we present the Platform for Analysis and Labeling of Medical time Series (PALMS) designed in Python. Its graphical user interface (GUI) facilitates three main types of manual annotations-(1) fiducials, e.g., R-peaks of ECG; (2) events with an adjustable duration, e.g., arrhythmic episodes; and (3) signal quality, e.g., data parts corrupted by motion artifacts. All annotations can be attributed to the same signal simultaneously in an ergonomic and user-friendly manner. Configuration for different data and annotation types is straightforward and flexible in order to use a wide range of data sources and to address many different use cases. Above all, configuration of PALMS allows plugging-in existing algorithms to display outcomes of automated processing, such as automatic R-peak detection, and to manually correct them where needed. This enables fast annotation and can be used to further improve algorithms. The GUI is currently complemented by ECG and PPG algorithms that detect characteristic points with high accuracy. The ECG algorithm reached 99% on the MIT/BIH arrhythmia database. The PPG algorithm was validated on two public databases with an F1-score above 98%. The GUI and optional algorithms result in an advanced software tool that allows the creation of diverse reference sets for existing datasets.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Frequência Cardíaca
7.
Sensors (Basel) ; 20(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604829

RESUMO

Cardiovascular diseases (CVD) are often characterized by their multifactorial complexity. This makes remote monitoring and ambulatory cardiac rehabilitation (CR) therapy challenging. Current wearable multimodal devices enable remote monitoring. Machine learning (ML) and artificial intelligence (AI) can help in tackling multifaceted datasets. However, for clinical acceptance, easy interpretability of the AI models is crucial. The goal of the present study was to investigate whether a multi-parameter sensor could be used during a standardized activity test to interpret functional capacity in the longitudinal follow-up of CR patients. A total of 129 patients were followed for 3 months during CR using 6-min walking tests (6MWT) equipped with a wearable ECG and accelerometer device. Functional capacity was assessed based on 6MWT distance (6MWD). Linear and nonlinear interpretable models were explored to predict 6MWD. The t-distributed stochastic neighboring embedding (t-SNE) technique was exploited to embed and visualize high dimensional data. The performance of support vector machine (SVM) models, combining different features and using different kernel types, to predict functional capacity was evaluated. The SVM model, using chronotropic response and effort as input features, showed a mean absolute error of 42.8 m (±36.8 m). The 3D-maps derived using the t-SNE technique visualized the relationship between sensor-derived biomarkers and functional capacity, which enables tracking of the evolution of patients throughout the CR program. The current study showed that wearable monitoring combined with interpretable ML can objectively track clinical progression in a CR population. These results pave the road towards ambulatory CR.


Assuntos
Reabilitação Cardíaca , Monitorização Ambulatorial/instrumentação , Tecnologia de Sensoriamento Remoto , Máquina de Vetores de Suporte , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736395

RESUMO

Long-term heart rate (HR) monitoring by wrist-worn photoplethysmograph (PPG) sensors enables the assessment of health conditions during daily life with high user comfort. However, PPG signals are vulnerable to motion artifacts (MAs), which significantly affect the accuracy of estimated physiological parameters such as HR. This paper proposes a novel modular algorithm framework for MA removal based on different wavelengths for wrist-worn PPG sensors. The framework uses a green PPG signal for HR monitoring and an infrared PPG signal as the motion reference. The proposed framework includes four main steps: motion detection, motion removal using continuous wavelet transform, approximate HR estimation and signal reconstruction. The proposed algorithm is evaluated against an electrocardiogram (ECG) in terms of HR error for a dataset of 6 healthy subjects performing 21 types of motion. The proposed MA removal method reduced the average error in HR estimation from 4.3, 3.0 and 3.8 bpm to 0.6, 1.0 and 2.1 bpm in periodic, random, and continuous non-periodic motion situations, respectively.

9.
J Physiol ; 595(7): 2301-2317, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27779762

RESUMO

KEY POINTS: Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. ABSTRACT: Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K+ current and a drastic decrease in the slow delayed rectifier K+ current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K+ currents influences ventricular arrhythmia susceptibility.


Assuntos
Arritmias Cardíacas/fisiopatologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/fisiologia , Função Ventricular Esquerda/fisiologia , Potenciais de Ação , Animais , Cobaias , Ventrículos do Coração/fisiopatologia , Modelos Biológicos
10.
PLoS Comput Biol ; 11(4): e1004242, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25928268

RESUMO

The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.


Assuntos
Potenciais de Ação/fisiologia , Sistema de Condução Cardíaco/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Ativação do Canal Iônico/fisiologia , Modelos Estatísticos , Suínos
11.
Biophys J ; 106(10): 2222-32, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24853751

RESUMO

Cardiac alternans, a putative trigger event for cardiac reentry, is a beat-to-beat alternation in membrane potential and calcium transient. Alternans was originally attributed to instabilities in transmembrane ion channel dynamics (i.e., the voltage mechanism). As of this writing, the predominant view is that instabilities in subcellular calcium handling are the main underlying mechanism. That being said, because the voltage and calcium systems are bidirectionally coupled, theoretical studies have suggested that both mechanisms can contribute. To date, to our knowledge, no experimental evidence of such a dual role within the same cell has been reported. Here, a combined electrophysiological and calcium imaging approach was developed and used to illuminate the contributions of voltage and calcium dynamics to alternans. An experimentally feasible protocol, quantification of subcellular calcium alternans and restitution slope during cycle-length ramping alternans control, was designed and validated. This approach allows simultaneous illumination of the contributions of voltage and calcium-driven instability to total cellular instability as a function of cycle-length. Application of this protocol in in vitro guinea-pig left-ventricular myocytes demonstrated that both voltage- and calcium-driven instabilities underlie alternans, and that the relative contributions of the two systems change as a function of pacing rate.


Assuntos
Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Glucanos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cobaias , Modelos Biológicos , Imagem Molecular
12.
J Appl Physiol (1985) ; 135(6): 1330-1338, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767559

RESUMO

In contrast to whole body bioimpedance, which estimates fluid status at a single point in time, thoracic bioimpedance applied by a wearable device could enable continuous measurements. However, clinical experience with thoracic bioimpedance in patients on dialysis is limited. To test the reproducibility of whole body and thoracic bioimpedance measurements and to compare their relationship with hemodynamic changes during hemodialysis, these parameters were measured pre- and end-dialysis in 54 patients during two sessions. The resistance from both bioimpedance techniques was moderately reproducible between two dialysis sessions (intraclass correlations of pre- to end-dialysis whole body and thoracic resistance between session 1 and 2 were 0.711 [0.58-0.8] and 0.723 [0.6-0.81], respectively). There was a very high to high correlation between changes in ultrafiltration volume and changes in whole body thoracic resistance. Changes in systolic blood pressure negatively correlated to both bioimpedance techniques. Although the relationship between changes in ultrafiltration volume and changes in resistance was stronger for whole body bioimpedance, the relationship with changes in blood pressure was at least comparable for thoracic measurements. These results suggest that thoracic bioimpedance, measured by a wearable device, may serve as an interesting alternative to whole body measurements for continuous hemodynamic monitoring during hemodialysis.NEW & NOTEWORTHY We examined the role of whole body and thoracic bioimpedance in hemodynamic changes during hemodialysis. Whole body and thoracic bioimpedance signals were strongly related to ultrafiltration volume and moderately, negatively, to changes in blood pressure. This work supports the further development of a wearable device measuring thoracic bioimpedance longitudinally in patients on hemodialysis. As such, it may serve as an innovative tool for continuous hemodynamic monitoring during hemodialysis in hospital or in a home-based setting.


Assuntos
Diálise Renal , Ultrafiltração , Humanos , Ultrafiltração/métodos , Pressão Sanguínea , Reprodutibilidade dos Testes , Impedância Elétrica
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3257-3260, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085642

RESUMO

Wearable bioimpedance is a technique proposed to estimate breathing parameters such as respiratory rate (RR). However, its potential application lies in clinical investigation of daily-life activities like walking. This study evaluated the effect of the walking interference on the estimation of breathing parameters. 50 chronic obstructive pulmonary disease patients performed static and active measurements during thoracic bioimpedance acquisition. The static measurements included respiratory airflow for reference. The active measurements were used to estimate the walking interference from bioimpedance, and the obtained signals were added to static measurements for comparison with the reference. Afterward, we applied four different preprocessing methods to remove this walking interference and the resulting signals were used to detect the respiratory cycles and estimate breathing parameters (inspiratory time, expiratory time, duty cycle, and RR). The methods performed differently in terms of accuracy and mean average percentage error (MAPE), showing the need for specific preprocessing for active measurements. Furthermore, the MAPE values in the RR estimation were close to 3 % indicating that breathing parameters can be accurately estimated during walking. Accordingly, the present study reinforces the applicability of wearable bioimpedance for respiratory monitoring. Clinical relevance- This study exhibits the suitability of wearable bioimpedance to estimate accurate breathing param-eters during walking activities.


Assuntos
Algoritmos , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/métodos , Respiração , Caminhada
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 666-669, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085651

RESUMO

Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems. Mobile health tools and deep learning algorithms are nowadays being proposed as innovative solutions for automatic apnea detection. In this work, a convolutional neural network (CNN) is trained for the identification of apnea events from the spectrograms of audio signals recorded with a smartphone. A systematic comparison of the effect of different window sizes on the model performance is provided. According to the results, the best models are obtained with 60 s windows (sensitivity-0.72, specilicity-0.89, AUROC = 0.88), For smaller windows, the model performance can be negatively impacted, because the windows become shorter than most apnea events, by which sound reductions can no longer be appreciated. On the other hand, longer windows tend to include multiple or mixed events, that will confound the model. This careful trade-off demonstrates the importance of selecting a proper window size to obtain models with adequate predictive power. This paper shows that CNNs applied to smartphone audio signals can facilitate sleep apnea detection in a realistic setting and is a first step towards an automated method to assist sleep technicians. Clinical Relevance- The results show the effect of the window size on the predictive power of CNNs for apnea detection. Furthermore, the potential of smartphones, audio signals, and deep neural networks for automatic sleep apnea screening is demonstrated.


Assuntos
Síndromes da Apneia do Sono , Smartphone , Algoritmos , Humanos , Redes Neurais de Computação , Polissonografia , Síndromes da Apneia do Sono/diagnóstico
15.
Comput Methods Programs Biomed ; 225: 107020, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905697

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements. METHODS: Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These parameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models including the 6-min walking distance (6MWD), the maximum HR (HRmax) after the walking, and the HR decay 3 min after (HRR3). The use of BN allows the assessment of the patients' status by predicting the 6MWT outcomes, but also inferring disease severity parameters based on actual patient's 6MWT outcomes. RESULTS: Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong (R = 0.84, MAPE = 8.10% for HRmax) and moderate (R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR3), improving the classical methods to estimate 6MWD. Secondly, the classification of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 84.4% for two defined severity groups. CONCLUSIONS: We propose a powerful two-way assessment tool for COPD patients, capable of predicting 6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way to implement a continuous monitoring system for COPD patients at home and to provide more personalized care.


Assuntos
Tolerância ao Exercício , Doença Pulmonar Obstrutiva Crônica , Teorema de Bayes , Teste de Esforço/métodos , Humanos , Desempenho Físico Funcional , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Caminhada
16.
IEEE J Biomed Health Inform ; 26(12): 5983-5991, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121947

RESUMO

Breathing pattern has been shown to be different in chronic obstructive pulmonary disease (COPD) patients compared to healthy controls during rest and walking. In this study we evaluated respiratory parameters and the breathing variability of COPD patients as a function of their severity. Thoracic bioimpedance was acquired on 66 COPD patients during the performance of the six-minute walk test (6MWT), as well as 5 minutes before and after the test while the patients were seated, i.e. resting and recovery phases. The patients were classified by their level of airflow limitation into moderate and severe groups. We characterized the breathing patterns by evaluating common respiratory parameters using only wearable bioimpedance. Specifically, we computed the median and the coefficient of variation of the parameters during the three phases of the protocol, and evaluated the statistical differences between the two COPD severity groups. We observed significant differences between the COPD severity groups only during the sitting phases, whereas the behavior during the 6MWT was similar. Particularly, we observed an inverse relationship between breathing pattern variability and COPD severity, which may indicate that the most severely diseased patients had a more restricted breathing compared to the moderate patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Dispositivos Eletrônicos Vestíveis , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Pulmão , Respiração , Teste de Caminhada
17.
Front Bioeng Biotechnol ; 10: 806761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237576

RESUMO

Changes in respiratory rate have been found to be one of the early signs of health deterioration in patients. In remote environments where diagnostic tools and medical attention are scarce, such as deep space exploration, the monitoring of the respiratory signal becomes crucial to timely detect life-threatening conditions. Nowadays, this signal can be measured using wearable technology; however, the use of such technology is often hampered by the low quality of the recordings, which leads more often to wrong diagnosis and conclusions. Therefore, to apply these data in diagnosis analysis, it is important to determine which parts of the signal are of sufficient quality. In this context, this study aims to evaluate the performance of a signal quality assessment framework, where two machine learning algorithms (support vector machine-SVM, and convolutional neural network-CNN) were used. The models were pre-trained using data of patients suffering from chronic obstructive pulmonary disease. The generalization capability of the models was evaluated by testing them on data from a different patient population, presenting normal and pathological breathing. The new patients underwent bariatric surgery and performed a controlled breathing protocol, displaying six different breathing patterns. Data augmentation (DA) and transfer learning (TL) were used to increase the size of the training set and to optimize the models for the new dataset. The effect of the different breathing patterns on the performance of the classifiers was also studied. The SVM did not improve when using DA, however, when using TL, the performance improved significantly (p < 0.05) compared to DA. The opposite effect was observed for CNN, where the biggest improvement was obtained using DA, while TL did not show a significant change. The models presented a low performance for shallow, slow and fast breathing patterns. These results suggest that it is possible to classify respiratory signals obtained with wearable technologies using pre-trained machine learning models. This will allow focusing on the relevant data and avoid misleading conclusions because of the noise, when designing bio-monitoring systems.

18.
JMIR Biomed Eng ; 6(2): e22911, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38907374

RESUMO

Currently, nearly 6 in 10 US adults are suffering from at least one chronic condition. Wearable technology could help in controlling the health care costs by remote monitoring and early detection of disease worsening. However, in recent years, there have been disappointments in wearable technology with respect to reliability, lack of feedback, or lack of user comfort. One of the promising sensor techniques for wearable monitoring of chronic disease is bioimpedance, which is a noninvasive, versatile sensing method that can be applied in different ways to extract a wide range of health care parameters. Due to the changes in impedance caused by either breathing or blood flow, time-varying signals such as respiration and cardiac output can be obtained with bioimpedance. A second application area is related to body composition and fluid status (eg, pulmonary congestion monitoring in patients with heart failure). Finally, bioimpedance can be used for continuous and real-time imaging (eg, during mechanical ventilation). In this viewpoint, we evaluate the use of wearable bioimpedance monitoring for application in chronic conditions, focusing on the current status, recent improvements, and challenges that still need to be tackled.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5508-5511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892372

RESUMO

Many studies have focused on novel noninvasive techniques to monitor respiratory rate such as bioimpedance. We propose an algorithm to detect respiratory phases using wearable bioimpedance to compute time parameters like respiratory rate, inspiratory and expiratory times, and duty cycle. The proposed algorithm was compared with two other algorithms from literature designed to estimate the respiratory rate using physiological signals like bioimpedance. We acquired bioimpedance and airflow from 50 chronic obstructive pulmonary disease (COPD) patients during an inspiratory loading protocol. We compared performance of the algorithms by computing accuracy and mean average percentage error (MAPE) between the bioimpedance parameters and the reference parameters from airflow. We found similar performance for the three algorithms in terms of accuracy (>0.96) and respiratory time and rate errors (<3.42 %). However, the proposed algorithm showed lower MAPE in duty cycle (10.18 %), inspiratory time (10.65 %) and expiratory time (8.61 %). Furthermore, only the proposed algorithm kept the statistical differences in duty cycle between COPD severity levels that were observed using airflow. Accordingly, we suggest bioimpedance to monitor breathing pattern parameters in home situations.Clinical relevance- This study exhibits the suitability of wearable thoracic bioimpedance to detect respiratory phases and to compute accurate breathing pattern parameters.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Taxa Respiratória
20.
Physiol Meas ; 42(11)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34571494

RESUMO

Background.Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. Its quantification has been suggested as a biomarker to diagnose different diseases. Two state-of-the-art methods, based on subspace projections and entropy, are used to estimate the RSA strength and are evaluated in this paper. Their computation requires the selection of a model order, and their performance is strongly related to the temporal and spectral characteristics of the cardiorespiratory signals.Objective.To evaluate the robustness of the RSA estimates to the selection of model order, delays, changes of phase and irregular heartbeats as well as to give recommendations for their interpretation on each case.Approach.Simulations were used to evaluate the model order selection when calculating the RSA estimates introduced before, as well as three different scenarios that can occur in signals acquired in non-controlled environments and/or from patient populations: the presence of irregular heartbeats; the occurrence of delays between heart rate variability (HRV) and respiratory signals; and the changes over time of the phase between HRV and respiratory signals.Main results.It was found that using a single model order for all the calculations suffices to characterize RSA correctly. In addition, the RSA estimation in signals containing more than 5 irregular heartbeats in a period of 5 min might be misleading. Regarding the delays between HRV and respiratory signals, both estimates are robust. For the last scenario, the two approaches tolerate phase changes up to 54°, as long as this lasts less than one fifth of the recording duration.Significance.Guidelines are given to compute the RSA estimates in non-controlled environments and patient populations.


Assuntos
Arritmia Sinusal , Arritmia Sinusal Respiratória , Entropia , Frequência Cardíaca , Humanos , Taxa Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA