Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549338

RESUMO

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Assuntos
Resistência à Seca , Solo , Raízes de Plantas , Secas , Produtos Agrícolas
2.
J Exp Bot ; 74(16): 4770-4788, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779607

RESUMO

Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.


Assuntos
Ecossistema , Água , Humanos , Água/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Agricultura
3.
Plant Cell Environ ; 45(3): 637-649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037274

RESUMO

In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.


Assuntos
Micorrizas , Agricultura , Fertilizantes , Fenótipo , Água
4.
J Exp Bot ; 73(15): 5279-5293, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35429274

RESUMO

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


Assuntos
Oryza , Estudo de Associação Genômica Ampla , Oryza/genética , Melhoramento Vegetal , Transpiração Vegetal/fisiologia , Água
5.
J Exp Bot ; 71(18): 5669-5679, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32526013

RESUMO

Elucidating genotype-by-environment interactions and partitioning its contribution to phenotypic variation remains a challenge for plant scientists. We propose a framework that utilizes genome-wide markers to model genotype-specific shoot growth trajectories as a function of time and soil water availability. A rice diversity panel was phenotyped daily for 21 d using an automated, high-throughput image-based, phenotyping platform that enabled estimation of daily shoot biomass and soil water content. Using these data, we modeled shoot growth as a function of time and soil water content, and were able to determine the time point where an inflection in the growth trajectory occurred. We found that larger, more vigorous plants exhibited an earlier repression in growth compared with smaller, slow-growing plants, indicating a trade-off between early vigor and tolerance to prolonged water deficits. Genomic inference for model parameters and time of inflection (TOI) identified several candidate genes. This study is the first to utilize a genome-enabled growth model to study drought responses in rice, and presents a new approach to jointly model dynamic morpho-physiological responses and environmental covariates.


Assuntos
Oryza , Secas , Genótipo , Oryza/genética , Fenótipo , Água
6.
Proc Natl Acad Sci U S A ; 114(34): 9200-9205, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784763

RESUMO

Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the AtPIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability (Pf) of guard cell protoplasts through activation of AtPIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H2O2), revealed that both ABA and flg22 triggered an accumulation of H2O2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H2O2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced Pf and both phosphorylated AtPIP2;1 on Ser121 in vitro. Accumulation of H2O2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of AtPIP2;1. We propose a mechanism whereby phosphorylation of AtPIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H2O2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H2O2 signaling.


Assuntos
Ácido Abscísico/metabolismo , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Estômatos de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fosforilação , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
7.
Plant Cell ; 27(7): 1945-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26163575

RESUMO

Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121.


Assuntos
Ácido Abscísico/farmacologia , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Teste de Complementação Genética , Movimento/efeitos dos fármacos , Mutação/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus
8.
Plant Cell Environ ; 39(2): 347-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26226878

RESUMO

Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.


Assuntos
Aquaporinas/metabolismo , Secas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Água/metabolismo , Aquaporinas/genética , Azidas/toxicidade , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/anatomia & histologia , Oryza/efeitos dos fármacos , Oryza/genética , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Transpiração Vegetal/efeitos dos fármacos , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
9.
Ann Bot ; 118(4): 711-724, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192712

RESUMO

Background and Aims Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Methods Xylem sap bleeding rates in the field (gsap g-1shoot) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. Key Results The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K+ concentration and higher bleeding rates in those varieties. Conclusions These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice.

10.
BMC Genet ; 16: 86, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243626

RESUMO

BACKGROUND: Interaction and genetic control for traits influencing the adaptation of the rice crop to varying environments was studied in a mapping population derived from parents (Moroberekan and Swarna) contrasting for drought tolerance, yield potential, lodging resistance, and adaptation to dry direct seeding. A BC2F3-derived mapping population for traits related to these four trait groups was phenotyped to understand the interactions among traits and to map and align QTLs using composite interval mapping (CIM). The study also aimed to identify QTLs for the four trait groups as composite traits using multivariate least square interval mapping (MLSIM) to further understand the genetic control of these traits. RESULTS: Significant correlations between drought- and yield-related traits at seedling and reproductive stages respectively with traits for adaptation to dry direct-seeded conditions were observed. CIM and MLSIM methods were applied to identify QTLs for univariate and composite traits. QTL clusters showing alignment of QTLs for several traits within and across trait groups were detected at chromosomes 3, 4, and 7 through CIM. The largest number of QTLs related to traits belonging to all four trait groups were identified on chromosome 3 close to the qDTY 3.2 locus. These included QTLs for traits such as bleeding rate, shoot biomass, stem strength, and spikelet fertility. Multivariate QTLs were identified at loci supported by univariate QTLs such as on chromosomes 3 and 4 as well as at distinctly different loci on chromosome 8 which were undetected through CIM. CONCLUSION: Rice requires better adaptation across a wide range of environments and cultivation practices to adjust to climate change. Understanding the genetics and trade-offs related to each of these environments and cultivation practices thus becomes highly important to develop varieties with stability of yield across them. This study provides a wider picture of the genetics and physiology of adaptation of rice to wide range of environments. With a complete understanding of the processes and relationships between traits and trait groups, marker-assisted breeding can be used more efficiently to develop plant types that can combine all or most of the beneficial traits and show high stability across environments, ecosystems, and cultivation practices.


Assuntos
Adaptação Biológica , Ecossistema , Oryza/fisiologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Biodiversidade , Meio Ambiente , Epistasia Genética , Fenótipo
11.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592643

RESUMO

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

12.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294329

RESUMO

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Assuntos
Arabidopsis , Pennisetum , Secas , Pennisetum/genética , Glutarredoxinas , Estudo de Associação Genômica Ampla , Produtos Agrícolas
13.
Front Plant Sci ; 13: 824720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574091

RESUMO

Selection criteria that co-optimize water use efficiency and yield are needed to promote plant productivity in increasingly challenging and variable drought scenarios, particularly dryland cereals in the semi-arid tropics. Optimizing water use efficiency and yield fundamentally involves transpiration dynamics, where restriction of maximum transpiration rate helps to avoid early crop failure, while maximizing grain filling. Transpiration restriction can be regulated by multiple mechanisms and involves cross-organ coordination. This coordination involves complex feedbacks and feedforwards over time scales ranging from minutes to weeks, and from spatial scales ranging from cell membrane to crop canopy. Aquaporins have direct effect but various compensation and coordination pathways involve phenology, relative root and shoot growth, shoot architecture, root length distribution profile, as well as other architectural and anatomical aspects of plant form and function. We propose gravimetric phenotyping as an integrative, cross-scale solution to understand the dynamic, interwoven, and context-dependent coordination of transpiration regulation. The most fruitful breeding strategy is likely to be that which maintains focus on the phene of interest, namely, daily and season level transpiration dynamics. This direct selection approach is more precise than yield-based selection but sufficiently integrative to capture attenuating and complementary factors.

14.
Plant Physiol ; 152(3): 1418-30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20034965

RESUMO

Aquaporins are channel proteins that facilitate the transport of water across plant cell membranes. In this work, we used a combination of pharmacological and reverse genetic approaches to investigate the overall significance of aquaporins for tissue water conductivity in Arabidopsis (Arabidopsis thaliana). We addressed the function in roots and leaves of AtPIP1;2, one of the most abundantly expressed isoforms of the plasma membrane intrinsic protein family. At variance with the water transport phenotype previously described in AtPIP2;2 knockout mutants, disruption of AtPIP1;2 reduced by 20% to 30% the root hydrostatic hydraulic conductivity but did not modify osmotic root water transport. These results document qualitatively distinct functions of different PIP isoforms in root water uptake. The hydraulic conductivity of excised rosettes (K(ros)) was measured by a novel pressure chamber technique. Exposure of Arabidopsis plants to darkness increased K(ros) by up to 90%. Mercury and azide, two aquaporin inhibitors with distinct modes of action, were able to induce similar inhibition of K(ros) by approximately 13% and approximately 25% in rosettes from plants grown in the light or under prolonged (11-18 h) darkness, respectively. Prolonged darkness enhanced the transcript abundance of several PIP genes, including AtPIP1;2. Mutant analysis showed that, under prolonged darkness conditions, AtPIP1;2 can contribute to up to approximately 20% of K(ros) and to the osmotic water permeability of isolated mesophyll protoplasts. Therefore, AtPIP1;2 can account for a significant portion of aquaporin-mediated leaf water transport. The overall work shows that AtPIP1;2 represents a key component of whole-plant hydraulics.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Membrana/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Azidas/farmacologia , DNA Bacteriano/genética , DNA de Plantas/genética , Escuridão , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Membrana/genética , Mercúrio/farmacologia , Mutagênese Insercional , Mutação , Osmose , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
15.
PLoS One ; 15(10): e0233481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33001997

RESUMO

Pearl millet is a key cereal for food security in arid and semi-arid regions but its yield is increasingly threatened by water stress. Physiological mechanisms relating to conservation of soil water or increased water use efficiency can alleviate that stress. Aquaporins (AQP) are water channels that mediate root water transport, thereby influencing plant hydraulics, transpiration and soil water conservation. However, AQP remain largely uncharacterized in pearl millet. Here, we studied AQP function in root water transport in two pearl millet lines contrasting for water use efficiency (WUE). We observed that these lines also contrasted for root hydraulic conductivity (Lpr) and AQP contribution to Lpr. The line with lower WUE showed significantly higher AQP contribution to Lpr. To investigate AQP isoforms contributing to Lpr, we developed genomic approaches to first identify the entire AQP family in pearl millet and secondly, characterize the plasma membrane intrinsic proteins (PIP) gene expression profile. We identified and annotated 33 AQP genes in pearl millet, among which ten encoded PIP isoforms. PgPIP1-3 and PgPIP1-4 were significantly more expressed in the line showing lower WUE, higher Lpr and higher AQP contribution to Lpr. Overall, our study suggests that the PIP1 AQP family are the main regulators of Lpr in pearl millet and may possibly be associated with mechanisms associated to whole plant water use. This study paves the way for further investigations on AQP functions in pearl millet hydraulics and adaptation to environmental stresses.


Assuntos
Aquaporinas , Pennisetum , Raízes de Plantas/fisiologia , Adaptação Fisiológica , Aquaporinas/genética , Aquaporinas/metabolismo , Genes de Plantas , Genoma de Planta , Pennisetum/genética , Pennisetum/fisiologia , Estresse Fisiológico , Transcriptoma , Água/metabolismo
16.
Biochem J ; 415(3): 409-16, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18637793

RESUMO

Water channel proteins, AQPs (aquaporins), of the PIP (plasma membrane intrinsic protein) subfamily, provide a means for fine and quick adjustments of the plant water status. A molecular model for gating of PIPs by cytosolic protons (H(+)) and divalent cations was derived from the atomic structure of spinach SoPIP2;1 (Spinacia oleracea PIP2;1) in an open- and a closed-pore conformation. In the present study, we produced the Arabidopsis AtPIP2;1 (Arabidopsis thaliana PIP2;1) homologue in Pichia pastoris, either WT (wild-type) or mutations at residues supposedly involved in gating. Stopped-flow spectrophotometric measurements showed that, upon reconstitution in proteoliposomes, all forms function as water channels. The first functional evidence for a direct gating of PIPs by divalent (bivalent) cations was obtained. In particular, cadmium and manganese were identified, in addition to calcium (Ca(2+)) and H(+) as potent inhibitors of WT AtPIP2;1. Our results further show that His(199), the previously identified site for H(+) sensing, but also N-terminal located Glu(31), and to a lesser extent Asp(28), are involved in both divalent-cation- and H(+)-mediated gating. In contrast, mutation of Arg(124) rendered AtPIP2;1 largely insensitive to Ca(2+) while remaining fully sensitive to H(+). The role of these residues in binding divalent cations and/or stabilizing the open or closed pore conformations is discussed.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Aquaporinas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Modelos Moleculares , Pichia/metabolismo , Conformação Proteica , Proteolipídeos/metabolismo , Prótons , Relação Estrutura-Atividade , Água/metabolismo
17.
Trends Plant Sci ; 24(3): 263-274, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30573308

RESUMO

The identification and isolation of genes underlying quantitative trait loci (QTLs) associated with agronomic traits in crops have been recently accelerated thanks to next-generation sequencing (NGS)-based technologies combined with plant genetics. With NGS, various revisited genetic approaches, which benefited from higher marker density, have been elaborated. These approaches improved resolution in QTL position and assisted in determining functional causative variations in genes. Examples of QTLs/genes associated with agronomic traits in crops and identified using different strategies based on whole-genome sequencing (WGS)/whole-genome resequencing (WGR) or RNA-seq are presented and discussed in this review. More specifically, we summarize and illustrate how NGS boosted bulk-segregant analysis (BSA), expression profiling, and the construction of polymorphism databases to facilitate the detection of QTLs and causative genes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Mapeamento Cromossômico , Estudos de Associação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
PLoS One ; 14(7): e0214182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329591

RESUMO

Pearl millet is able to withstand dry and hot conditions and plays an important role for food security in arid and semi-arid areas of Africa and India. However, low soil fertility and drought constrain pearl millet yield. One target to address these constraints through agricultural practices or breeding is root system architecture. In this study, in order to easily phenotype the root system in field conditions, we developed a model to predict root length density (RLD) of pearl millet plants from root intersection densities (RID) counted on a trench profile in field conditions. We identified root orientation as an important parameter to improve the relationship between RID and RLD. Root orientation was notably found to depend on soil depth and to differ between thick roots (more anisotropic with depth) and fine roots (isotropic at all depths). We used our model to study pearl millet root system response to drought and showed that pearl millet reorients its root growth toward deeper soil layers that retain more water in these conditions. Overall, this model opens ways for the characterization of the impact of environmental factors and management practices on pearl millet root system development.


Assuntos
Pennisetum/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Agricultura , Secas , Modelos Biológicos , Pennisetum/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Estresse Fisiológico
19.
PLoS One ; 13(10): e0201635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359386

RESUMO

Pearl millet plays a major role in food security in arid and semi-arid areas of Africa and India. However, it lags behind the other cereal crops in terms of genetic improvement. The recent sequencing of its genome opens the way to the use of modern genomic tools for breeding. Our study aimed at identifying genetic components involved in early drought stress tolerance as a first step toward the development of improved pearl millet varieties or hybrids. A panel of 188 inbred lines from West Africa was phenotyped under early drought stress and well-irrigated conditions. We found a strong impact of drought stress on yield components. This impact was variable between inbred lines. We then performed an association analysis with a total of 392,493 SNPs identified using Genotyping-by-Sequencing (GBS). Correcting for genetic relatedness, genome wide association study identified QTLs for biomass production in early drought stress conditions and for stay-green trait. In particular, genes involved in the sirohaem and wax biosynthesis pathways were found to co-locate with two of these QTLs. Our results might contribute to breed pearl millet lines with improved yield under drought stress.


Assuntos
Estudo de Associação Genômica Ampla , Pennisetum/genética , Locos de Características Quantitativas/genética , África , Biomassa , Mapeamento Cromossômico , Secas , Técnicas de Genotipagem , Índia , Pennisetum/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
20.
Rice (N Y) ; 11(1): 43, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30066052

RESUMO

BACKGROUND: Traditional rice (Oryza sativa) varieties are valuable resources for the improvement of drought resistance. qDTY3.2 is a drought-yield quantitative trait locus that was identified in a population derived from the traditional variety Moroberekan and the drought-susceptible variety Swarna. In this study, our aim was to characterize the physiological mechanisms associated with qDTY3.2. Our approach was to phenotype fifteen BC2F3:4 lines for shoot and root drought resistance-related traits as compared to Swarna in the field under well-watered and drought stress conditions. Four BC2F3:4 lines contrasting for yield under drought were selected for detailed characterization of shoot morphology, water use related traits, flowering time and root system architecture in the field as well as in controlled environments (lysimeters in a greenhouse, and gel imaging platform in a growth chamber). RESULTS: Across five field experiments, grain yield correlated significantly with root growth along the soil profile, flowering time, and canopy temperature under drought conditions. The four selected BC2F3:4 lines showed earlier flowering time, reduced distribution of root growth to shallow soil layers which resulted in lower water uptake (between 0 and 30 cm) and drought-induced increased distribution of root growth to deep soil layers (between 30 and 60 cm) as compared to Swarna in the field. Root system architecture phenotypes were confirmed in whole root systems in lysimeters, and corresponded to higher numbers of root tips in a gel imaging platform, highlighting the potential stability of some root traits across different growth stages and systems. CONCLUSIONS: We conclude that earlier flowering time, reduced shallow root growth, and drought-induced increased deep root growth are associated with the presence of qDTY3.2 since these phenotypes were consistently observed in the selected QTL lines with full introgression of qDTY3.2. We hypothesize that the qDTY3.2 associated RSA phenotypes led to better use of water and metabolic resources which, combined with earlier flowering time, improved yield under drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA