Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nat Chem Biol ; 20(3): 302-313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37973889

RESUMO

Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.


Assuntos
Condensados Biomoleculares , Metaboloma , Espectrometria de Massas , Fosfolipídeos , RNA
2.
PLoS Comput Biol ; 20(5): e1012158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768214

RESUMO

The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that a typical binding event is limited by ADP state rather than physical search. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and physical properties.


Assuntos
Cinesinas , Microtúbulos , Ligação Proteica , Cinesinas/metabolismo , Cinesinas/química , Cinética , Microtúbulos/metabolismo , Microtúbulos/química , Biologia Computacional , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Simulação por Computador , Modelos Biológicos , Difusão
3.
Cell ; 141(2): 304-14, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20403325

RESUMO

Cytoplasmic dynein is responsible for many aspects of cellular and subcellular movement. LIS1, NudE, and NudEL are dynein interactors initially implicated in brain developmental disease but now known to be required in cell migration, nuclear, centrosomal, and microtubule transport, mitosis, and growth cone motility. Identification of a specific role for these proteins in cytoplasmic dynein motor regulation has remained elusive. We find that NudE stably recruits LIS1 to the dynein holoenzyme molecule, where LIS1 interacts with the motor domain during the prepowerstroke state of the dynein crossbridge cycle. NudE abrogates dynein force production, whereas LIS1 alone or with NudE induces a persistent-force dynein state that improves ensemble function of multiple dyneins for transport under high-load conditions. These results likely explain the requirement for LIS1 and NudE in the transport of nuclei, centrosomes, chromosomes, and the microtubule cytoskeleton as well as the particular sensitivity of migrating neurons to reduced LIS1 expression.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Algoritmos , Animais , Bovinos , Chlorocebus aethiops , Humanos , Cinesinas/metabolismo , Lisencefalia/metabolismo , Ratos , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(41): e2206677119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191197

RESUMO

Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3ß. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3ß in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.


Assuntos
Dineínas , Cinesinas , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
5.
Cell ; 135(6): 1098-107, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19070579

RESUMO

The microtubule motor kinesin-1 plays central roles in intracellular transport. It has been widely assumed that many cellular cargos are moved by multiple kinesins and that cargos with more motors move faster and for longer distances; concrete evidence, however, is sparse. Here we rigorously test these notions using lipid droplets in Drosophila embryos. We first employ antibody inhibition, genetics, biochemistry, and particle tracking to demonstrate that kinesin-1 mediates plus-end droplet motion. We then measure how variation in kinesin-1 expression affects the forces driving individual droplets and estimate the number of kinesins actively engaged per droplet. Unlike in vitro, increased motor number results in neither longer travel distances nor higher velocities. Our data suggest that cargos in vivo can simultaneously engage multiple kinesins and that transport properties are largely unaffected by variation in motor number. Apparently, higher-order regulatory mechanisms rather than motor number per se dominate cargo transport in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Cinesinas/metabolismo , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Dineínas/metabolismo , Embrião não Mamífero/metabolismo , Lipídeos/química , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos
6.
Nature ; 541(7637): 371-375, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28002401

RESUMO

Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5' end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2'-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5' cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability.


Assuntos
Adenosina/análogos & derivados , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Estabilidade de RNA , Adenosina/química , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Endorribonucleases/metabolismo , Epigênese Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Células HEK293 , Meia-Vida , Humanos , Masculino , Metilação , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade por Substrato , Sítio de Iniciação de Transcrição , Transcriptoma
7.
J Biol Chem ; 297(6): 101331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688661

RESUMO

Nonalcohol-associated fatty liver disease (NAFLD) is characterized by excessive hepatic accumulation of fat that can progress to steatohepatitis, and currently, therapeutic options are limited. Using a high-fat diet (HFD) mouse model of NAFLD, we determined the effects of the synthetic retinoid, AC261066, a selective retinoic acid receptor ß2 (RARß2) agonist, on the global liver transcriptomes and metabolomes of mice with dietary-induced obesity (DIO) using genome-wide RNA-seq and untargeted metabolomics. We found that AC261066 limits mRNA increases in several presumptive NAFLD driver genes, including Pklr, Fasn, Thrsp, and Chchd6. Importantly, AC261066 limits the increases in the transcript and protein levels of KHK, a key enzyme for fructose metabolism, and causes multiple changes in liver metabolites involved in fructose metabolism. In addition, in cultured murine hepatocytes, where exposure to fructose and palmitate results in a profound increase in lipid accumulation, AC261066 limits this lipid accumulation. Importantly, we demonstrate that in a human hepatocyte cell line, RARß is required for the inhibitory effects of AC261066 on palmitate-induced lipid accumulation. Finally, our data indicate that AC261066 inhibits molecular events underpinning fibrosis and exhibits anti-inflammatory effects. In conclusion, changes in the transcriptome and metabolome indicate that AC261066 affects molecular changes underlying multiple aspects of NAFLD, including steatosis and fibrosis. Therefore, we suggest that AC261066 may have potential as an effective therapy for NAFLD.


Assuntos
Benzoatos/uso terapêutico , Metaboloma/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores do Ácido Retinoico/agonistas , Tiazóis/uso terapêutico , Transcriptoma/efeitos dos fármacos , Animais , Benzoatos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores do Ácido Retinoico/metabolismo , Tiazóis/farmacologia
8.
Mol Carcinog ; 61(9): 851-864, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726553

RESUMO

Research has shown extensive metabolic remodeling in clear cell renal cell carcinoma (ccRCC), with increased glutathione (GSH) levels. We hypothesized that activating transcription factor-4 (ATF4) and the integrated stress response (ISR) induce a metabolic shift, including increased GSH accumulation, and that Vitamin A deficiency (VAD), found in ccRCCs, can also activate ATF4 signaling in the kidney. To determine the role of ATF4, we used publicly available RNA sequencing (RNA-seq) data sets from The Cancer Genomics Atlas. Subsequently, we performed RNA-seq and liquid chromatography-mass spectrometry-based metabolomics analysis of the murine TRAnsgenic Cancer of the Kidney (TRACK) model for early-stage ccRCC. To validate our findings, we generated RCC4 cell lines with ATF4 gene edits (ATF4-knockout [KO]) and subjected these cells to metabolic isotope tracing. Analysis of variance, the two-sided Student's t test, and gene set enrichment analysis were used (p < 0.05) to determine statistical significance. Here we show that most human ccRCC tumors exhibit activation of the transcription factor ATF4. Activation of ATF4 is concomitant with enrichment of the ATF4 gene set and elevated expression of ATF4 target genes ASNS, ALDH1L2, MTHFD2, DDIT3 (CHOP), DDIT4, TRIB3, EIF4EBP1, SLC7A11, and PPP1R15A (GADD34). Transcript profiling and metabolomics analyses show that activated hypoxia-inducible factor-1α (HIF1α) signaling in our TRACK ccRCC murine model also induces an ATF4-mediated ISR. Notably, both normoxic HIF1α signaling in TRACK kidneys and VAD in wild-type kidneys diminish amino acid levels, increase ASNS, TRIB3, and MTHFD2 messenger RNA levels, and increase levels of lipids and GSH. By metabolic isotope tracing in human RCC4 kidney cancer parental and ATF4 gene-edited (ATF4-KO) cell lines, we show that ATF4 increases GSH accumulation in part via activation of the mitochondrial one-carbon metabolism pathway. Our results demonstrate for the first time that activation of ATF4 enhances GSH accumulation, increases purine and pyrimidine biosynthesis, and contributes to transcriptional and metabolic remodeling in ccRCC. Moreover, constitutive HIF1α expressed only in murine kidney proximal tubules activates ATF4, leading to the metabolic changes associated with the ISR. Our data indicate that HIF1α can promote ccRCC via ATF4 activation. Moreover, lack of Vitamin A in the kidney recapitulates aspects of the ISR.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Neoplasias Renais/patologia , Camundongos , Transdução de Sinais , Transcrição Gênica
9.
J Pediatr ; 236: 70-77, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34023342

RESUMO

OBJECTIVE: To evaluate the efficacy of topical mupirocin in reducing Staphylococcus aureus colonization in infants in the neonatal intensive care unit (NICU). STUDY DESIGN: A prospective double-blind randomized controlled trial of mupirocin vs placebo in S aureus-colonized infants was conducted in a tertiary care NICU between October 2016 and December 2019. Weekly universal active surveillance with polymerase chain reaction screening identified colonized infants. Colonized infants received a 5-day course of mupirocin (mupirocin group) or petroleum jelly (control group). Repeat courses were given for additional positive screens. RESULTS: A total of 216 infants were enrolled; 205 were included in data analyses. Primary decolonization was more successful for mupirocin-treated infants (86 of 104 [83%]) than for controls (20 of 101; 20%) (P < .001). Although recurrent S aureus colonization occurred frequently (59 of 81 [73%] mupirocin-treated and 26 of 33 [79%] controls), subsequent decolonization remained more successful for mupirocin-treated infants than for controls (38 of 49 [78%] vs 2 of 21 [10%]; P < .001). Subgroup analyses of infants of ≤30 weeks' gestational age yielded similar results; decolonization occurred more often in mupirocin-treated infants compared with control infants (63 of 76 [83%] vs 13 of 74 [18%]; P < .001). Bacterial sterile site infections tended to be less frequent in mupirocin-treated infants compared with controls (2 of 104 [2%] vs 8 of 101 [8%]; P = .057). No invasive S aureus infections occurred in mupirocin-treated infants, but 50% of infections in controls were from S aureus, and 1 resulted in death. CONCLUSIONS: Universal active surveillance and targeted treatment with topical mupirocin is a successful decolonization strategy for NICU infants and may prevent S aureus infection. However, S aureus colonization frequently recurs, necessitating repeat treatment. TRIAL REGISTRATION: Clinicaltrials.gov: NCT02967432.


Assuntos
Antibacterianos/administração & dosagem , Carga Bacteriana/efeitos dos fármacos , Terapia Intensiva Neonatal , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Administração Tópica , Método Duplo-Cego , Farmacorresistência Bacteriana , Feminino , Humanos , Incidência , Recém-Nascido , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Estudos Prospectivos , Retratamento , Infecções Estafilocócicas/diagnóstico , Fatores de Tempo
10.
Nat Chem Biol ; 15(4): 340-347, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778204

RESUMO

Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m1 and m2, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m1 isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m2 isoform (N6,2'-O-dimethyladenosine, m6Am). The relative m1 and m2 isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m2 isoform. We show FTO is inhibited by the oncometabolite D-2-hydroxyglutarate, resulting in increased m2-snRNA levels. Furthermore, cells that exhibit high m2-snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO controls a previously unknown central step of snRNA processing involving reversible methylation, and suggest that epitranscriptomic information in snRNA may influence mRNA splicing.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , RNA Nuclear Pequeno/biossíntese , Adenosina/biossíntese , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Processamento Alternativo , Animais , Células HEK293 , Humanos , Masculino , Metilação , Camundongos , Camundongos Knockout , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Nuclear Pequeno/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(3): 537-542, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295928

RESUMO

The eukaryotic cell's microtubule cytoskeleton is a complex 3D filament network. Microtubules cross at a wide variety of separation distances and angles. Prior studies in vivo and in vitro suggest that cargo transport is affected by intersection geometry. However, geometric complexity is not yet widely appreciated as a regulatory factor in its own right, and mechanisms that underlie this mode of regulation are not well understood. We have used our recently reported 3D microtubule manipulation system to build filament crossings de novo in a purified in vitro environment and used them to assay kinesin-1-driven model cargo navigation. We found that 3D microtubule network geometry indeed significantly influences cargo routing, and in particular that it is possible to bias a cargo to pass or switch just by changing either filament spacing or angle. Furthermore, we captured our experimental results in a model which accounts for full 3D geometry, stochastic motion of the cargo and associated motors, as well as motor force production and force-dependent behavior. We used a combination of experimental and theoretical analysis to establish the detailed mechanisms underlying cargo navigation at microtubule crossings.


Assuntos
Microtúbulos/química , Microtúbulos/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Imageamento Tridimensional , Cinesinas/química , Cinesinas/metabolismo , Cinética , Modelos Biológicos , Modelos Teóricos , Ligação Proteica
12.
Proc Natl Acad Sci U S A ; 115(8): E1779-E1788, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432173

RESUMO

Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix. Molecular dynamics simulations predict that disrupting this bond enhances catalytic site-neck linker coupling. We tested this using structural kinetics and single-molecule mechanics and found that the K146Q mutation increases motor performance under load and coupling of the neck linker to catalytic site. These changes convert Eg5 from a motor that dissociates from the microtubule at low load into one that is more tightly coupled and dissociation resistant-features shared by kinesin 1. These features combined with the increased propensity to stall predict that the K146Q Eg5 acetylation mimetic should act in the cell as a "brake" that slows spindle pole separation, and we have confirmed this by expressing this modified motor in mitotically active cells. Thus, our results illustrate how a posttranslational modification of a kinesin can be used to fine tune motor behavior to meet specific physiological needs.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Mitose/fisiologia , Sequência de Aminoácidos , Fenômenos Biomecânicos , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
13.
Behav Brain Sci ; 44: e189, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34907880

RESUMO

According to Clarke and Beck (C&B), the approximate number system (ANS) represents numbers. We argue that the ANS represents pure magnitudes. Considerations of explanatory economy favor the pure magnitudes hypothesis. The considerations C&B direct against the pure magnitudes hypothesis do not have force.

14.
J Biol Chem ; 294(14): 5536-5548, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737277

RESUMO

Ethanol (EtOH) is a teratogen, but its teratogenic mechanisms are not fully understood. The alcohol form of vitamin A (retinol/ROL) can be oxidized to all-trans-retinoic acid (RA), which plays a critical role in stem cell differentiation and development. Using an embryonic stem cell (ESC) model to analyze EtOH's effects on differentiation, we show here that EtOH and acetaldehyde, but not acetate, increase differentiation-associated mRNA levels, and that EtOH decreases pluripotency-related mRNAs. Using reporter assays, ChIP assays, and retinoic acid receptor-γ (RARγ) knockout ESC lines generated by CRISPR/Cas9 and homologous recombination, we demonstrate that EtOH signals via RARγ binding to RA response elements (RAREs) in differentiation-associated gene promoters or enhancers. We also report that EtOH-mediated increases in homeobox A1 (Hoxa1) and cytochrome P450 family 26 subfamily A member 1 (Cyp26a1) transcripts, direct RA target genes, require the expression of the RA-synthesizing enzyme, aldehyde dehydrogenase 1 family member A2 (Aldh1a2), suggesting that EtOH-mediated induction of Hoxa1 and Cyp26a1 requires ROL from the serum. As shown with CRISPR/Cas9 knockout lines, the retinol dehydrogenase gene Rdh10 and a functional RARE in the ROL transporter stimulated by retinoic acid 6 (Stra6) gene are required for EtOH induction of Hoxa1 and Cyp26a1 We conclude that EtOH stimulates stem cell differentiation by increasing the influx and metabolism of ROL for downstream RARγ-dependent transcription. In stem cells, EtOH may shift cell fate decisions to alter developmental outcomes by increasing endogenous ROL/RA signaling via increased Stra6 expression and ROL oxidation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Etanol/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Receptores do Ácido Retinoico/genética , Retinal Desidrogenase , Ácido Retinoico 4 Hidroxilase/biossíntese , Ácido Retinoico 4 Hidroxilase/genética , Transdução de Sinais/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Receptor gama de Ácido Retinoico
15.
Neurobiol Dis ; 144: 105025, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745521

RESUMO

Amyotrophic lateral sclerosis is a disease characterized by progressive paralysis and death. Most ALS-cases are sporadic (sALS) and patient heterogeneity poses challenges for effective therapies. Applying metabolite profiling on 77-sALS patient-derived-fibroblasts and 43-controls, we found ~25% of sALS cases (termed sALS-1) are characterized by transsulfuration pathway upregulation, where methionine-derived-homocysteine is channeled into cysteine for glutathione synthesis. sALS-1 fibroblasts selectively exhibited a growth defect under oxidative conditions, fully-rescued by N-acetylcysteine (NAC). [U13C]-glucose tracing showed transsulfuration pathway activation with accelerated glucose flux into the Krebs cycle. We established a four-metabolite support vector machine model predicting sALS-1 metabotype with 97.5% accuracy. Both sALS-1 metabotype and growth phenotype were validated in an independent cohort of sALS cases. Importantly, plasma metabolite profiling identified a system-wide cysteine metabolism perturbation as a hallmark of sALS-1. Findings reveal that sALS patients can be stratified into distinct metabotypes with differential sensitivity to metabolic stress, providing novel insights for personalized therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cisteína/metabolismo , Fibroblastos/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Metaboloma , Idoso , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Serina/metabolismo , Pele/citologia
16.
Adv Exp Med Biol ; 1267: 117-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894480

RESUMO

Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/imunologia , Bactérias/imunologia , Histonas/química , Histonas/imunologia , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Histonas/farmacologia , Imunidade Inata
17.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066028

RESUMO

Neural tube closure is a critical early step in central nervous system development that requires precise control of metabolism to ensure proper cellular proliferation and differentiation. Dysregulation of glucose metabolism during pregnancy has been associated with neural tube closure defects (NTDs) in humans suggesting that the developing neuroepithelium is particularly sensitive to metabolic changes. However, it remains unclear how metabolic pathways are regulated during neurulation. Here, we used single-cell mRNA-sequencing to analyze expression of genes involved in metabolism of carbon, fats, vitamins, and antioxidants during neurulation in mice and identify a coupling of glycolysis and cellular proliferation to ensure proper neural tube closure. Using loss of miR-302 as a genetic model of cranial NTD, we identify misregulated metabolic pathways and find a significant upregulation of glycolysis genes in embryos with NTD. These findings were validated using mass spectrometry-based metabolite profiling, which identified increased glycolytic and decreased lipid metabolites, consistent with a rewiring of central carbon traffic following loss of miR-302. Predicted miR-302 targets Pfkp, Pfkfb3, and Hk1 are significantly upregulated upon NTD resulting in increased glycolytic flux, a shortened cell cycle, and increased proliferation. Our findings establish a critical role for miR-302 in coordinating the metabolic landscape of neural tube closure.


Assuntos
Ciclo Celular , Glicólise , MicroRNAs/metabolismo , Tubo Neural/metabolismo , Neurulação , Animais , Células Cultivadas , Hexoquinase/genética , Hexoquinase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Tubo Neural/embriologia , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
18.
Behav Brain Sci ; 43: e16, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32159502

RESUMO

Resource rationality may explain suboptimal patterns of reasoning; but what of "anti-Bayesian" effects where the mind updates in a direction opposite the one it should? We present two phenomena - belief polarization and the size-weight illusion - that are not obviously explained by performance- or resource-based constraints, nor by the authors' brief discussion of reference repulsion. Can resource rationality accommodate them?


Assuntos
Cognição , Compreensão , Humanos , Resolução de Problemas
19.
Traffic ; 18(10): 658-671, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28731566

RESUMO

The kinesin family proteins are often studied as prototypical molecular motors; a deeper understanding of them can illuminate regulation of intracellular transport. It is typically assumed that they function identically. Here we find that this assumption of homogeneous function appears incorrect: variation among motors' velocities in vivo and in vitro is larger than the stochastic variation expected for an ensemble of "identical" motors. When moving on microtubules, slow and fast motors are persistently slow, and fast, respectively. We develop theory that provides quantitative criteria to determine whether the observed single-molecule variation is too large to be generated from an ensemble of identical molecules. To analyze such heterogeneity, we group traces into homogeneous sub-ensembles. Motility studies varying the temperature, pH and glycerol concentration suggest at least 2 distinct functional states that are independently affected by external conditions. We end by investigating the functional ramifications of such heterogeneity through Monte-Carlo multi-motor simulations.


Assuntos
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Simulação de Dinâmica Molecular , Animais , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila/química , Humanos , Cinesinas/química , Movimento (Física) , Domínios Proteicos
20.
J Pediatr ; 211: 20-26.e1, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31349916

RESUMO

OBJECTIVE: To compare pulmonary and neurodevelopmental outcomes in extremely preterm infants with evolving bronchopulmonary dysplasia treated with either a 42-day course of dexamethasone or 9-day course(s) of dexamethasone. STUDY DESIGN: This was a prospective, randomized study in 59 infants ≤27 weeks of gestation born between October 2006 and December 2010, who at day 10-21 of life had ventilatory support with mean airway pressure ≥8 cm H2O and FiO2 ≥60%. Infants received dexamethasone 0.5 mg/k/day × 3 days followed by a slow taper (42-day group, n = 30) or dexamethasone 0.5 mg/k/day followed by a rapid taper (9-day group, n = 29). Infants in the 9-day group received additional 9-day courses if they again required entry support. The primary outcome was intact survival (normal neurologic examination, IQ >70, and functioning in school without supplemental educational support) at 7 years of age. RESULTS: The 42-day and 9-day groups were similar for mean gestational age (25 weeks) and all baseline characteristics. Nineteen of 29 infants (66%) in the 9-day group received only 1 course of dexamethasone; therefore, the total steroid dose for the 42-day group (7.56 mg/kg) was significantly greater than that for the 9-day group (4.04 mg/kg), P < .001. Infants in the 42-day group had shorter duration of ventilation (25 vs 37 days), P < .005, received fewer transfusions (2 vs 3.5), P < .01, and reached full enteral feeds earlier (40 vs 46 days), P < .05. Intact survival at school age was significantly increased in the 42-day group (75%) compared with the 9-day group (34%), P < .005. CONCLUSION: A 42-day tapering course of dexamethasone in extremely preterm infants at high risk for bronchopulmonary dysplasia decreased hospital morbidities and increased rate of survival without handicap compared with a treatment protocol that attempted to minimize steroid exposure.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Dexametasona/administração & dosagem , Doenças do Prematuro/tratamento farmacológico , Esteroides/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Criança , Pré-Escolar , Feminino , Seguimentos , Idade Gestacional , Glucocorticoides/uso terapêutico , Ventilação de Alta Frequência , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Estudos Prospectivos , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA