RESUMO
Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.
Assuntos
Células Matadoras Naturais , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Macrófagos , Células Mieloides , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genéticaRESUMO
Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.
Assuntos
Doença de Crohn/terapia , Citocinas/imunologia , Intestinos/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença de Crohn/imunologia , Doença de Crohn/patologia , Humanos , Imunoterapia/métodos , Fagócitos/patologia , Análise de Célula Única , Células Estromais/patologia , Linfócitos T/patologiaRESUMO
It is currently accepted that cancer-associated fibroblasts (CAF) participate in T-cell exclusion from tumor nests. To unbiasedly test this, we used single-cell RNA sequencing coupled with multiplex imaging on a large cohort of lung tumors. We identified four main CAF populations, two of which are associated with T-cell exclusion: (i) MYH11+αSMA+ CAF, which are present in early-stage tumors and form a single cell layer lining cancer aggregates, and (ii) FAP+αSMA+ CAF, which appear in more advanced tumors and organize in patches within the stroma or in multiple layers around tumor nests. Both populations orchestrate a particular structural tissue organization through dense and aligned fiber deposition compared with T cell-permissive CAF. Yet they produce distinct matrix molecules, including collagen IV (MYH11+αSMA+ CAF) and collagen XI/XII (FAP+αSMA+ CAF). Hereby, we uncovered unique molecular programs of CAF driving T-cell marginalization, whose targeting should increase immunotherapy efficacy in patients bearing T cell-excluded tumors. SIGNIFICANCE: The cellular and molecular programs driving T-cell marginalization in solid tumors remain unclear. Here, we describe two CAF populations associated with T-cell exclusion in human lung tumors. We demonstrate the importance of pairing molecular and spatial analysis of the tumor microenvironment, a prerequisite to developing new strategies targeting T cell-excluding CAF. See related commentary by Sherman, p. 2501. This article is highlighted in the In This Issue feature, p. 2483.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Fibroblastos Associados a Câncer/patologia , Linfócitos T , Microambiente Tumoral , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , FibroblastosRESUMO
Immunotherapy is a mainstay of non-small cell lung cancer (NSCLC) management. While tumor mutational burden (TMB) correlates with response to immunotherapy, little is known about the relationship between the baseline immune response and tumor genotype. Using single-cell RNA sequencing, we profiled 361,929 cells from 35 early-stage NSCLC lesions. We identified a cellular module consisting of PDCD1+CXCL13+ activated T cells, IgG+ plasma cells, and SPP1+ macrophages, referred to as the lung cancer activation module (LCAMhi). We confirmed LCAMhi enrichment in multiple NSCLC cohorts, and paired CITE-seq established an antibody panel to identify LCAMhi lesions. LCAM presence was found to be independent of overall immune cell content and correlated with TMB, cancer testis antigens, and TP53 mutations. High baseline LCAM scores correlated with enhanced NSCLC response to immunotherapy even in patients with above median TMB, suggesting that immune cell composition, while correlated with TMB, may be a nonredundant biomarker of response to immunotherapy.