Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7889): 395-407, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912083

RESUMO

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.


Assuntos
Ácidos/análise , Organismos Aquáticos , Modelos Climáticos , Ecossistema , Aquecimento Global/estatística & dados numéricos , Oceanos e Mares , Oxigênio/análise , Ácidos/química , Animais , Organismos Aquáticos/fisiologia , Calor Extremo/efeitos adversos , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oxigênio/química
2.
Glob Chang Biol ; 30(6): e17345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831686

RESUMO

Observations from the California Current System (CalCS) indicate that the long-term trend in ocean acidification (OA) and the naturally occurring corrosive conditions for the CaCO3 mineral aragonite (saturation state Ω < 1) have a damaging effect on shelled pteropods, a keystone group of calcifying organisms in the CalCS. Concern is heightened by recent findings suggesting that shell formation and developmental progress are already impacted when Ω falls below 1.5. Here, we quantify the impact of low Ω conditions on pteropods using an individual-based model (IBM) with life-stage-specific mortality, growth, and behavior in a high-resolution regional hindcast simulation of the CalCS between 1984 and 2019. Special attention is paid to attributing this impact to different processes that lead to such low Ω conditions, namely natural variability, long-term trend, and extreme events. We find that much of the observed damage in the CalCS, and specifically >70% of the shell CaCO3 loss, is due to the pteropods' exposure to naturally occurring low Ω conditions as a result of their diel vertical migration (DVM). Over the hindcast period, their exposure to damaging waters (Ω < 1.5) increases from 9% to 49%, doubling their shell CaCO3 loss, and increasing their mortality by ~40%. Most of this increased exposure is due to the shoaling of low Ω waters driven by the long-term trend in OA. Extreme OA events amplify this increase by ~40%. Our approach can quantify the health of pteropod populations under shifting environmental conditions, and attribute changes in fitness or population structure to changes in the stressor landscape across hierarchical time scales.


Assuntos
Carbonato de Cálcio , Água do Mar , Carbonato de Cálcio/análise , Animais , Água do Mar/química , California , Exoesqueleto/química , Concentração de Íons de Hidrogênio , Movimentos da Água , Gastrópodes/fisiologia , Gastrópodes/crescimento & desenvolvimento , Mudança Climática
3.
Nature ; 560(7718): 360-364, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111788

RESUMO

Marine heatwaves (MHWs) are periods of extreme warm sea surface temperature that persist for days to months1 and can extend up to thousands of kilometres2. Some of the recently observed marine heatwaves revealed the high vulnerability of marine ecosystems3-11 and fisheries12-14 to such extreme climate events. Yet our knowledge about past occurrences15 and the future progression of MHWs is very limited. Here we use satellite observations and a suite of Earth system model simulations to show that MHWs have already become longer-lasting and more frequent, extensive and intense in the past few decades, and that this trend will accelerate under further global warming. Between 1982 and 2016, we detect a doubling in the number of MHW days, and this number is projected to further increase on average by a factor of 16 for global warming of 1.5 degrees Celsius relative to preindustrial levels and by a factor of 23 for global warming of 2.0 degrees Celsius. However, current national policies for the reduction of global carbon emissions are predicted to result in global warming of about 3.5 degrees Celsius by the end of the twenty-first century16, for which models project an average increase in the probability of MHWs by a factor of 41. At this level of warming, MHWs have an average spatial extent that is 21 times bigger than in preindustrial times, last on average 112 days and reach maximum sea surface temperature anomaly intensities of 2.5 degrees Celsius. The largest changes are projected to occur in the western tropical Pacific and Arctic oceans. Today, 87 per cent of MHWs are attributable to human-induced warming, with this ratio increasing to nearly 100 per cent under any global warming scenario exceeding 2 degrees Celsius. Our results suggest that MHWs will become very frequent and extreme under global warming, probably pushing marine organisms and ecosystems to the limits of their resilience and even beyond, which could cause irreversible changes.


Assuntos
Aquecimento Global/estatística & dados numéricos , Temperatura Alta , Oceanos e Mares , Animais , Organismos Aquáticos , Regiões Árticas , Ecossistema , Atividades Humanas , Oceano Pacífico , Probabilidade
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619085

RESUMO

Anthropogenic climate change profoundly alters the ocean's environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts.


Assuntos
Ecossistema , Oceanos e Mares , Mudança Climática , Planeta Terra
5.
Nature ; 537(7618): 89-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582222

RESUMO

Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.


Assuntos
Água Doce/análise , Camada de Gelo/química , Salinidade , Água do Mar/análise , Água do Mar/química , Movimentos da Água , Regiões Antárticas , Atmosfera/química , Mudança Climática/estatística & dados numéricos , Congelamento , História do Século XX , História do Século XXI , Oceanos e Mares , Temperatura , Incerteza , Vento
7.
Glob Chang Biol ; 22(6): 2198-215, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26732346

RESUMO

The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change.


Assuntos
Ciclo do Carbono , Mudança Climática , Modelos Teóricos , Água/análise , Dióxido de Carbono/análise , Simulação por Computador , Ecossistema , Transpiração Vegetal , Incerteza
9.
Proc Natl Acad Sci U S A ; 113(16): 4246-8, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27071128
10.
Nature ; 445(7124): 163-7, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17215838

RESUMO

Nitrogen fixation is crucial for maintaining biological productivity in the oceans, because it replaces the biologically available nitrogen that is lost through denitrification. But, owing to its temporal and spatial variability, the global distribution of marine nitrogen fixation is difficult to determine from direct shipboard measurements. This uncertainty limits our understanding of the factors that influence nitrogen fixation, which may include iron, nitrogen-to-phosphorus ratios, and physical conditions such as temperature. Here we determine nitrogen fixation rates in the world's oceans through their impact on nitrate and phosphate concentrations in surface waters, using an ocean circulation model. Our results indicate that nitrogen fixation rates are highest in the Pacific Ocean, where water column denitrification rates are high but the rate of atmospheric iron deposition is low. We conclude that oceanic nitrogen fixation is closely tied to the generation of nitrogen-deficient waters in denitrification zones, supporting the view that nitrogen fixation stabilizes the oceanic inventory of fixed nitrogen over time.


Assuntos
Fixação de Nitrogênio , Nitrogênio/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Biomassa , Ferro/metabolismo , Oceanos e Mares , Oceano Pacífico , Fósforo/metabolismo , Plâncton/metabolismo , Movimentos da Água
11.
J Plankton Res ; 45(6): 832-852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084301

RESUMO

The patterns of species diversity of plankton functional groups (PFGs) remain poorly understood although they matter greatly for marine ecosystem functioning. Here, we use an ensemble of empirical species distribution models for 845 plankton species to estimate the global species richness of three phytoplankton and 11 zooplankton functional groups as a function of objectively selected environmental predictors. The annual mean species richness of all PFGs decreases from the low to the high latitudes, but the steepness and the shape of this decrease vary significantly across PFGs. Pteropods, small copepods (Oithonids and Poecilostomatoids) and Salps have the steepest latitudinal gradients, whereas Amphipods and the three phytoplankton groups have the weakest ones. Temperature, irradiance and nutrient concentration are the first-order control on the latitudinal richness patterns, whilst the environmental conditions associated to upwelling systems, boundary currents and oxygen minimum zones modulate the position of the peaks and troughs in richness. The species richness of all PFGs increases with net primary production but decreases with particles size and the efficiency of the biological carbon pump. Our study puts forward emergent biodiversity-ecosystem functioning relationships and hypotheses about their underlying drivers for future field-based and modelling research.

12.
Sci Adv ; 8(41): eabq0220, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223458

RESUMO

The enhanced seasonal amplitude of atmospheric CO2 has been viewed so far primarily as a Northern Hemisphere phenomenon. Yet, analyses of atmospheric CO2 records from 49 stations between 1980 and 2018 reveal substantial trends and variations in this amplitude globally. While no significant trends can be discerned before 2000 in most places, strong positive trends emerge after 2000 in the southern high latitudes. Using factorial simulations with an atmospheric transport model and analyses of surface ocean Pco2 observations, we show that the increase is best explained by the onset of increasing seasonality of air-sea CO2 exchange over the Southern Ocean around 2000. Underlying these changes is the long-term ocean acidification trend that tends to enhance the seasonality of the air-sea fluxes, but this trend is modified by the decadal variability of the Southern Ocean carbon sink. The seasonal variations of atmospheric CO2 thus emerge as a sensitive recorder of the variations of the Southern Ocean carbon sink.

13.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16193043

RESUMO

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Ecossistema , Água do Mar/química , Ácidos/análise , Animais , Antozoários/metabolismo , Atmosfera/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plâncton/química , Plâncton/metabolismo , Termodinâmica , Fatores de Tempo , Incerteza
14.
Nat Commun ; 12(1): 169, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420093

RESUMO

Net primary production (NPP) is the foundation of the oceans' ecosystems and the fisheries they support. In the Arctic Ocean, NPP is controlled by a complex interplay of light and nutrients supplied by upwelling as well as lateral inflows from adjacent oceans and land. But so far, the role of the input from land by rivers and coastal erosion has not been given much attention. Here, by upscaling observations from the six largest rivers and using measured coastal erosion rates, we construct a pan-Arctic, spatio-temporally resolved estimate of the land input of carbon and nutrients to the Arctic Ocean. Using an ocean-biogeochemical model, we estimate that this input fuels 28-51% of the current annual Arctic Ocean NPP. This strong enhancement of NPP is a consequence of efficient recycling of the land-derived nutrients on the vast Arctic shelves. Our results thus suggest that nutrient input from the land is a key process that will affect the future evolution of Arctic Ocean NPP.

15.
Nat Commun ; 12(1): 5226, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471105

RESUMO

Marine phytoplankton and zooplankton form the basis of the ocean's food-web, yet the impacts of climate change on their biodiversity are poorly understood. Here, we use an ensemble of species distribution models for a total of 336 phytoplankton and 524 zooplankton species to determine their present and future habitat suitability patterns. For the end of this century, under a high emission scenario, we find an overall increase in plankton species richness driven by ocean warming, and a poleward shift of the species' distributions at a median speed of 35 km/decade. Phytoplankton species richness is projected to increase by more than 16% over most regions except for the Arctic Ocean. In contrast, zooplankton richness is projected to slightly decline in the tropics, but to increase strongly in temperate to subpolar latitudes. In these latitudes, nearly 40% of the phytoplankton and zooplankton assemblages are replaced by poleward shifting species. This implies that climate change threatens the contribution of plankton communities to plankton-mediated ecosystem services such as biological carbon sequestration.


Assuntos
Biodiversidade , Aquecimento Global , Biologia Marinha , Plâncton/classificação , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Cadeia Alimentar , Fitoplâncton , Temperatura , Zooplâncton
16.
Nature ; 458(7235): 155-6, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19279622
18.
Ann Rev Mar Sci ; 11: 159-186, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30212259

RESUMO

The CO2 uptake by the Southern Ocean (<35°S) varies substantially on all timescales and is a major determinant of the variations of the global ocean carbon sink. Particularly strong are the decadal changes characterized by a weakening period of the Southern Ocean carbon sink in the 1990s and a rebound after 2000. The weakening in the 1990s resulted primarily from a southward shift of the westerlies that enhanced the upwelling and outgassing of respired (i.e., natural) CO2. The concurrent reduction in the storage rate of anthropogenic CO2 in the mode and intermediate waters south of 35°S suggests that this shift also decreased the uptake of anthropogenic CO2. The rebound and the subsequent strong, decade-long reinvigoration of the carbon sink appear to have been driven by cooling in the Pacific Ocean, enhanced stratification in the Atlantic and Indian Ocean sectors, and a reduced overturning. Current-generation ocean models generally do not reproduce these variations and are poorly skilled at making decadal predictions in this region.


Assuntos
Dióxido de Carbono/metabolismo , Modelos Teóricos , Oceanos e Mares , Água do Mar/química , Dióxido de Carbono/química , Sequestro de Carbono , Movimentos da Água
19.
Sci Adv ; 5(5): eaau6253, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31106265

RESUMO

Despite their importance to ocean productivity, global patterns of marine phytoplankton diversity remain poorly characterized. Although temperature is considered a key driver of general marine biodiversity, its specific role in phytoplankton diversity has remained unclear. We determined monthly phytoplankton species richness by using niche modeling and >540,000 global phytoplankton observations to predict biogeographic patterns of 536 phytoplankton species. Consistent with metabolic theory, phytoplankton richness in the tropics is about three times that in higher latitudes, with temperature being the most important driver. However, below 19°C, richness is lower than expected, with ~8°- 14°C waters (~35° to 60° latitude) showing the greatest divergence from theoretical predictions. Regions of reduced richness are characterized by maximal species turnover and environmental variability, suggesting that the latter reduces species richness directly, or through enhancing competitive exclusion. The nonmonotonic relationship between phytoplankton richness and temperature suggests unanticipated complexity in responses of marine biodiversity to ocean warming.


Assuntos
Biodiversidade , Fitoplâncton/fisiologia , Algoritmos , Clima , Simulação por Computador , Ecossistema , Geografia , Modelos Lineares , Método de Monte Carlo , Probabilidade , Estações do Ano , Temperatura
20.
Science ; 363(6432): 1193-1199, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872519

RESUMO

We quantify the oceanic sink for anthropogenic carbon dioxide (CO2) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year-1 and represents 31 ± 4% of the global anthropogenic CO2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO2, substantial regional differences in storage rate are found, likely owing to climate variability-driven changes in ocean circulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA