Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2302478120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549262

RESUMO

Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Retroalimentação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
2.
J Biol Chem ; 293(43): 16697-16708, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30213861

RESUMO

The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif-containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip-Su(dx)-mediated Notch ubiquitination.


Assuntos
Proteínas de Drosophila/química , Drosophila/enzimologia , Ubiquitina-Proteína Ligases/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Domínios WW
3.
J Biol Chem ; 293(11): 4149-4158, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29382713

RESUMO

Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.


Assuntos
Proteínas 14-3-3/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas 14-3-3/química , Subunidades alfa do Complexo de Proteínas Adaptadoras/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
4.
Front Pharmacol ; 15: 1361651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405664

RESUMO

Insulin resistance in brain and amyloidogenesis are principal pathological features of diabetes-related cognitive decline and development of Alzheimer's disease (AD). A growing body of evidence suggests that maintaining glucose under control in diabetic patients is beneficial for preventing AD development. Dipeptidyl peptidase 4 inhibitors (DDP4is) are a class of novel glucose-lowering medications through increasing insulin excretion and decreasing glucagon levels that have shown neuroprotective potential in recent studies. This review consolidates extant evidence from earlier and new studies investigating the association between DPP4i use, AD, and other cognitive outcomes. Beyond DPP4i's benefits in alleviating insulin resistance and glucose-lowering, underlying mechanisms for the potential neuroprotection with DPP4i medications were categorized into the following sections: (Ferrari et al., Physiol Rev, 2021, 101, 1,047-1,081): the benefits of DPP4is on directly ameliorating the burden of ß-amyloid plaques and reducing the formation of neurofibrillary tangles; DPP4i increasing the bioactivity of neuroprotective DPP4 substrates including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and stromal-derived factor-1α (SDF-1α) etc.; pleiotropic effects of DPP4is on neuronal cells and intracerebral structure including anti-inflammation, anti-oxidation, and anti-apoptosis. We further revisited recently published epidemiological studies that provided supportive data to compliment preclinical evidence. Given that there remains a lack of completed randomized trials that aim at assessing the effect of DPP4is in preventing AD development and progression, this review is expected to provide a useful insight into DPP4 inhibition as a potential therapeutic target for AD prevention and treatment. The evidence is helpful for informing the rationales of future clinical research and guiding evidence-based clinical practice.

5.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38913026

RESUMO

The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.


Assuntos
Autofagia , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Serina-Treonina Quinases TOR , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Animais , Humanos , Autofagia/genética , Camundongos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Lisossomos/metabolismo , Lisossomos/genética , Transdução de Sinais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética
6.
Cell Rep ; 42(7): 112677, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37352102

RESUMO

Polarity proteins regulate the proliferation and differentiation of neural progenitors to generate neurons during brain development through multiple signaling pathways. However, how cell polarity couples the signaling pathways remains unclear. Here, we show that coiled-coil domain-containing protein 85c (Ccdc85c) interacts with the polarity protein Par3 to regulate the proliferation of radial glial cells (RGCs) via phase separation coupled to percolation (PSCP). We find that the interaction with Ccdc85c relieves the intramolecular auto-inhibition of Par3, which leads to PSCP of Par3. Downregulation of Ccdc85c causes RGC differentiation. Importantly, the open conformation of Par3 facilitates the recruitment of the Notch regulator Numb to the Par3 condensates, which might prevent the attenuation of Notch activity to maintain RGC proliferation. Furthermore, ectopic activation of Notch signaling rescues RGC proliferation defects caused by the downregulation of Ccdc85c. These results suggest that Ccdc85c-mediated PSCP of Par3 regulates Notch signaling to control RGC proliferation during brain development.


Assuntos
Polaridade Celular , Transdução de Sinais , Polaridade Celular/fisiologia , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Proliferação de Células , Receptores Notch/metabolismo
7.
Nat Commun ; 11(1): 2266, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385244

RESUMO

The evolutionarily conserved Par3/Par6/aPKC complex regulates the polarity establishment of diverse cell types and distinct polarity-driven functions. However, how the Par complex is concentrated beneath the membrane to initiate cell polarization remains unclear. Here we show that the Par complex exhibits cell cycle-dependent condensation in Drosophila neuroblasts, driven by liquid-liquid phase separation. The open conformation of Par3 undergoes autonomous phase separation likely due to its NTD-mediated oligomerization. Par6, via C-terminal tail binding to Par3 PDZ3, can be enriched to Par3 condensates and in return dramatically promote Par3 phase separation. aPKC can also be concentrated to the Par3N/Par6 condensates as a client. Interestingly, activated aPKC can disperse the Par3/Par6 condensates via phosphorylation of Par3. Perturbations of Par3/Par6 phase separation impair the establishment of apical-basal polarity during neuroblast asymmetric divisions and lead to defective lineage development. We propose that phase separation may be a common mechanism for localized cortical condensation of cell polarity complexes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Células COS , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Chlorocebus aethiops , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Larva/citologia , Complexos Multiproteicos/química , Neurônios/citologia , Neurônios/metabolismo , Domínios Proteicos , Proteína Quinase C/metabolismo , Ratos
8.
Nat Commun ; 10(1): 3162, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320636

RESUMO

HECT E3 ligases control the degradation and functioning of numerous oncogenic/tumor-suppressive factors and signaling proteins, and their activities must be tightly regulated to prevent cancers and other diseases. Here we show that the Nedd4 family HECT E3 WWP1 adopts an autoinhibited state, in which its multiple WW domains sequester HECT using a multi-lock mechanism. Removing WW2 or WW34 led to a partial activation of WWP1. The structure of fully inhibited WWP1 reveals that many WWP1 mutations identified in cancer patients result in a partially active state with increased E3 ligase activity, and the WWP1 mutants likely promote cell migration by enhancement of ∆Np63α degradation. We further demonstrate that WWP2 and Itch utilize a highly similar multi-lock autoinhibition mechanism as that utilized by WWP1, whereas Nedd4/4 L and Smurf2 utilize a slightly variant version. Overall, these results reveal versatile autoinhibitory mechanisms that fine-tune the ligase activities of the HECT family enzymes.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4/genética , Domínios Proteicos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA