Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(1): 110763, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38110129

RESUMO

Since smallpox was eradicated in 1980, the monkeypox virus (MPXV) has emerged as the most threatening orthopoxvirus in the world. In this study, we conducted a comprehensive analysis of the currently published complete genome sequences of the monkeypox virus. The core/variable regions were identified through core-pan analysis of MPXV. Besides single-nucleotide polymorphisms, our study also revealed that specific genes, multi-copy genes, repeat sequences, and recombination fragments are primarily distributed in the variable region. This result suggests that variable regions are not only more susceptible to single-base mutations, but also to events such as gene loss or gain, as well as recombination. Taken together, our results demonstrate the genomic characteristics of the core/variable regions of MPXV, and contribute to our understanding of the evolution of MPXV.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Genômica , Mutação , Polimorfismo de Nucleotídeo Único
2.
Microb Pathog ; 192: 106685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750774

RESUMO

QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1ß, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.


Assuntos
Anticorpos Antibacterianos , Infecções por Haemophilus , Interferon gama , Interleucina-4 , Animais , Camundongos , Interleucina-4/metabolismo , Interleucina-4/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/microbiologia , Interferon gama/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina Quinase/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Imunidade Humoral , Camundongos Endogâmicos BALB C , Baço/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proliferação de Células , Feminino , Adjuvantes Imunológicos , Haemophilus parasuis/imunologia , Haemophilus parasuis/genética , Citocinas/metabolismo , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Linfócitos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética
3.
Microb Pathog ; 164: 105426, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35101561

RESUMO

Dermatophytosis is an intractable superficial fungal infection of keratinized structures, with approximately 20% incidence in humans. Alterations of keratinocytes in the pathogenesis of dermatophytosis at the transcriptome level remain unclear. To understand and characterize such responses, keratinocytes were infected with Trichophyton mentagrophytes. After infection with 1 × 105 conidia/mL T. mentagrophytes for 24 h, the adherence of fungal hyphae to keratinocytes and the damage caused to cell morphology and structure were observed by light microscopy and transmission electron microscopy, respectively. Levels of pro-inflammatory cytokines IL-1α, IL-1ß, TNFα, and IL-8 significantly increased after infection. RNA-seq and bioinformatic analyses revealed that 766 genes were significantly whereas 2207 genes were repressed in the T. mentagrophyte-infected cells. Some of the differentially expressed genes (DEGs) were related to inflammation, immune responses, wound healing, metabolism, and oxidative stress. GO and KEGG pathway enrichment analyses revealed that DEGs and pathways involved in inflammatory response, immune response, and pathogen-induced dysfunction were significantly enriched in the infected cells. Furthermore, gene set enrichment analysis revealed that higher expression gene sets were mainly involved in immune responses, whereas lower expression gene sets were related to cell component organization or biogenesis and transporter activity. Furthermore, protein-protein interaction network and function analyses revealed that JUN, TP53, FOS, MYC, and HSP90AA1 play a key role in immune responses. Overall, our study systematically uncovered the transcriptome-level response of keratinocytes to T. mentagrophyte and provided insights into dermatophytosis treatment.


Assuntos
Dermatomicoses , Tinha , Biologia Computacional , Dermatomicoses/microbiologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos , Tinha/genética , Tinha/microbiologia , Transcriptoma , Trichophyton/genética
4.
Microb Pathog ; 172: 105785, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150554

RESUMO

The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).


Assuntos
Glucose , Pasteurellaceae , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Adenosina/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Amino Açúcares/metabolismo , Benzoatos/metabolismo , Biotina/genética , Biotina/metabolismo , Glucose/metabolismo , Metaboloma , Metano , Nucleotídeos/metabolismo , Fosfatos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Piruvatos/metabolismo , RNA Mensageiro/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Terpenos , Transcriptoma , Pasteurellaceae/enzimologia
5.
Mol Biol Rep ; 49(9): 8337-8347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690960

RESUMO

BACKGROUND: The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS: The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION: Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.


Assuntos
Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Receptor 3 Toll-Like , Animais , Proliferação de Células , Células Cultivadas , Cães , Terapia de Imunossupressão/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , RNA Mensageiro/metabolismo , Receptor 3 Toll-Like/metabolismo
6.
Mol Cell Biochem ; 476(2): 1135-1149, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33196943

RESUMO

Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic material due to their capacities for self-renewal, multilineage differentiation, and immunomodulation and have attracted great attention in regenerative medicine. However, MSCs may lose their biological functions because of donor age or disease and environmental pressure before and after transplantation, which hinders the application of MSC-based therapy. As a major intracellular lysosome-dependent degradative process, autophagy plays a pivotal role in maintaining cellular homeostasis and withstanding environmental pressure and may become a potential therapeutic target for improving MSC functions. Recent studies have demonstrated that the regulation of autophagy is a promising approach for improving the biological properties of MSCs. More in-depth investigations about the role of autophagy in MSC biology are required to contribute to the clinical application of MSCs. In this review, we focus on the role of autophagy regulation by various physical and chemical factors on the biological functions of MSCs in vitro and in vivo, and provide some strategies for enhancing the therapeutic efficacy of MSCs.


Assuntos
Autofagia , Homeostase , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa , Animais , Diferenciação Celular , Humanos
7.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768788

RESUMO

Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 µM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-ß-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 µM~10 µM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.


Assuntos
Senescência Celular/efeitos dos fármacos , Curcumina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Senescência Celular/fisiologia , China , Curcumina/metabolismo , Cães , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Microb Pathog ; 144: 104175, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32224209

RESUMO

Trichophyton mentagrophytes (T. mentagrophytes) is the main cause of rabbit dermatophytosis. As the main pathogen-associated molecular pattern of T. mentagrophytes, the role of ß-glucan in the pathogenesis of rabbit dermatophytosis remains elusive. Keratinocytes (KC) are the main cellular component and the first defensive line against fungal pathogens in the skin. Therefore, the present study investigated the effects of ß-glucan on rabbit KC from dorsal skin. ß-glucan was found to inhibit KC proliferation by 10% at 20 ug/ml and this concentration was thus considered as optimal. Next, 20 ug/ml ß-glucan stimulation for 24 h significantly increased CXCL8, CXCL11, and IL-1ß secretions in KC. Furthermore, ß-glucan exposure induced the expressions of JAK2 mRNA, STAT3 mRNA, and p-STAT3 protein. Silencing JAK2 expression inhibited p-STAT3 protein expression and ß-glucan-induced IL-1ß secretion. And overexpression of JAK2 further promoted ß-glucan-mediated p-STAT3 protein and IL-1ß productions. These results suggested that ß-glucan-induced CXCL8, CXCL11, and IL-1ß secretions in rabbit KC might be involved in the inflammatory response of T. mentagrophytes infected rabbit dorsal skin. However, only IL-1ß secretion was promoted by the JAK2/STAT3 signaling pathway. In conclusion, this study is a necessary step toward elucidating the mechanisms that underlie skin immune system injury stimulated by ß-glucan.


Assuntos
Interleucina-1beta/biossíntese , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Tinha/patologia , beta-Glucanas/farmacologia , Animais , Arthrodermataceae , Células Cultivadas , Quimiocina CXCL11/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Coelhos , Transdução de Sinais/fisiologia , Tinha/microbiologia
10.
DNA Cell Biol ; 43(9): 474-481, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049814

RESUMO

The qseC gene is a two-component system that encodes a histidine protein kinase and is highly conserved among different Glaesserella parasuis strains. In this study, we used qRT-PCR and enzyme-linked immunosorbent assay to confirm that Toll-like receptor 4 (TLR4) plays a role in the expression of proinflammatory cytokines interleukin (IL)-1ß and IL-6 by stimulating RAW 264.7 macrophages with QseC. Furthermore, we revealed that blocking the p38 and NF-κB pathways that regulate signaling can significantly reduce the production of proinflammatory cytokines induced by QseC. In summary, our data suggest that QseC is a novel proinflammatory mediator that induces TLR4-dependent proinflammatory activity in RAW 264.7 macrophages through the p38 and NF-κB pathways.


Assuntos
Citocinas , Macrófagos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Camundongos , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Citocinas/metabolismo , Citocinas/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Haemophilus parasuis/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
11.
Front Microbiol ; 15: 1371667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765683

RESUMO

Globally, ~8%-12% of couples confront infertility issues, male-related issues being accountable for 50%. This review focuses on the influence of gut microbiota and their metabolites on the male reproductive system from five perspectives: sperm quality, testicular structure, sex hormones, sexual behavior, and probiotic supplementation. To improve sperm quality, gut microbiota can secrete metabolites by themselves or regulate host metabolites. Endotoxemia is a key factor in testicular structure damage that causes orchitis and disrupts the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex hormone levels by participating in the synthesis of sex hormone-related enzymes directly and participating in the enterohepatic circulation of sex hormones, and affect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of the brain that control sexual arousal and behavior through metabolites. Probiotic supplementation can improve male reproductive function. Therefore, the gut microbiota may affect male reproductive function and behavior; however, further research is needed to better understand the mechanisms underlying microbiota-mediated male infertility.

12.
Curr Res Food Sci ; 9: 100823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253721

RESUMO

Matcha shows promise for diabetes, obesity, and gut microbiota disorders. Studies suggest a significant link between gut microbiota, metabolites, and obesity. Thus, matcha may have a positive impact on obesity by modulating gut microbiota and metabolites. This study used 16S rDNA sequencing and untargeted metabolomics to examine the cecal contents in mice. By correlation analysis, we explored the potential mechanisms responsible for the positive effects of matcha on obesity. The results indicated that matcha had a mitigating effect on the detrimental impacts of a high-fat diet (HFD) on multiple physiological indicators in mice, including body weight, adipose tissue weight, serum total cholesterol (TC), and low-density lipoprotein (LDL) levels, as well as glucose tolerance. Moreover, it was observed that matcha had an impact on the structural composition of gut microbiota and gut metabolites. Specifically, matcha was able to reverse the alterations in the abundance of certain obesity-improving bacteria, such as Alloprevotella, Ileibacterium, and Rikenella, as well as the abundance of obesity-promoting bacteria Romboutsia, induced by a HFD. Furthermore, matcha can influence the levels of metabolites, including formononetin, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate, within the gastrointestinal tract. Additionally, matcha enhances caffeine metabolism and the HIF-1 signaling pathway in the KEGG pathway. The results of the correlation analysis suggest that formononetin, theobromine, 1,3,7-trimethyluric acid, and Vitamin C displayed negative correlation with both the obesity phenotype and microbiota known to exacerbate obesity, while demonstrating positive correlations with microbiota that alleviated obesity. However, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate had the opposite effect. In conclusion, the impact of matcha on gut metabolites may be attributed to its modulation of the abundance of Alloprevotella, Ileibacterium, Rikenella, and Romboutsia within the gastrointestinal tract, thereby potentially contributing to the amelioration of obesity.

13.
Curr Res Food Sci ; 9: 100805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131951

RESUMO

As a multi-factorial disease, obesity has become one of the major health problems in the world, and it is still increasing rapidly. Konjac supplementation, as a convenient dietary therapy, has been shown to be able to regulate gut microbiota and improve obesity. However, the specific mechanism by which konjac improves obesity through gut microbiota remains to be studied. In this study, a high-fat diet (HFD) was used to induce a mouse obesity model, and 16S rDNA sequencing and an untargeted metabolomics were used to investigate the impact of konjac on gut microbiota and gut metabolites in HFD-induced obese mice. The results show that konjac can reduce the body weight, adipose tissue weight, and lipid level of high-fat diet induced obese mice by changing the gut microbiota structure and gut metabolic profile. Association analysis revealed that konjac supplementation induced changes in gut microbiota, resulting in the up-regulation of 7-dehydrocholesterol and trehalose 6-phosphate, as well as the down-regulation of glycocholic acid and ursocholic acid within the Secondary bile acid biosynthesis pathway, ultimately leading to improvements in obesity. Among them, g_Acinetobacter (Greengene ID: 911888) can promote the synthesis of 7-dehydrocholesterol by synthesizing ERG3. g_Allobaculum (Greengene ID: 271516) and g_Allobaculum (Greengene ID: 259370) can promote the breakdown of trehalose 6-phosphate by synthesizing glvA. Additionally, the down-regulation of glycocholic acid and ursocholic acid may be influenced by the up-regulation of Lachnospiraceae_NK4A136_group. In conclusion, konjac exerts an influence on gut metabolites through the regulation of gut microbiota, thereby playing a pivotal role in alleviating obesity induced by a high-fat diet.

14.
Front Microbiol ; 15: 1343511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450171

RESUMO

Introduction: It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain. Methods: In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites. Results: After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.

15.
Virus Res ; 334: 199163, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364814

RESUMO

The family Alloherpesviridae contains herpesviruses of fish and amphibians. Due to the significant economic losses to aquaculture that herpesviruses can cause, the primary areas of research interest are concerning their pathogenesis and prevention. Despite alloherpesvirus genomic sequences becoming more widely accessible, methods regarding their genus/species classification are still relatively unexplored. In the present study, the phylogenetic relationships between 40 completely sequenced alloherpesviruses were illustrated by the viral proteomic tree (ViPTree), which was divided into three monophyletic groups, namely Cyprinivirus, Ictalurivirus and Batrachovirus. Additionally, average nucleotide identity (ANI) and average amino acid identity (AAI) analyses were performed across all available sequences and clearly displayed species boundaries with the threshold value of ANI/AAI set at 90%. Subsequently, core-pan analysis uncovered 809 orthogroups and 11 core genes shared by all 40 alloherpesvirus genome sequences. For the former, a 15 percent identity depicts a clear genus boundary; for the latter, 8 of them may be qualified for phylogenetic analysis based on amino acid or nucleic acid sequences after being verified using maximum likelihood (ML) or neighbor-joining (NJ) phylogenetic trees. Finally, although the dot plot analysis was valid for the members within Ictalurivirus, it was unsuccessful for Cyprinivirus and Batrachovirus. Taken together, the comparison of individual methodologies provides a wide range of alternatives for alloherpesviruses classification under various circumstances.


Assuntos
Herpesviridae , Ictalurivirus , Animais , Filogenia , Proteômica , Herpesviridae/genética , Ictalurivirus/genética , Genômica/métodos
16.
Phytomedicine ; 109: 154548, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610154

RESUMO

BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , alfa-Sinucleína/metabolismo , Caenorhabditis elegans , Doenças Neurodegenerativas/tratamento farmacológico , Animais Geneticamente Modificados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Autofagia , Doença de Alzheimer/tratamento farmacológico
17.
Gene ; 836: 146695, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35738442

RESUMO

Two component systems (TCS) mediate specific responses to different conditions and/or pressures. In the quorum sensing Glaesserella parasuis (QSE) BC TCS, qseB, as a response regulator, is closely related to the transcriptional regulation of multiple downstream genes. In this study, the effects of qseB gene deletion, which encodes the response regulator of population density sensing in G. parasuis, were studied through biological characteristics and metabolomic analysis. Based on previous research, we further explored the virulence of ΔqseB mutant strains through cell morphology, adhesion and invasion. The ΔqseB mutant and parent strains were sequenced by metabolome and combined with the previous transcriptome sequencing results for joint analysis. This study aims to clarify the regulatory effect of QseB on the virulence of G. parasuis and lay the foundation for revealing the pathogenic mechanism of G. parasuis. We detected 476 different metabolites, of which 30 metabolites (6.3%) had a significant difference in abundance between SC1401 and ΔqseB (p < 0.05). We conducted a comparative analysis of pathway enrichment on the transcriptome and metabolome, and found that the two omics participate in seven metabolic pathways together. The top 10 KEGG pathways with the largest number of genes and metabolites identified in this experiment are ABC transporters, Biosynthesis of secondary metabolites, Cysteine and methionine metabolism, Purine metabolism, Pyrimidine metabolism, Metabolic pathways, and Nicotinate and nicotinamide metabolism. Analysis of metabolome sequencing results showed that differential metabolites were also enriched in metabolic pathways, such as Purine metabolism, cGMP-PKG signaling pathway and cAMP signaling pathway, which were not found in transcriptome sequencing data. The internal coloration of the mutant strain ΔqseB was uneven, and the adhesion and invasion ability of PAM cell lines were significantly reduced. We speculate that QseB may affect the adhesion and invasion ability of Glaesserella parasuis by influencing substance transport and signal transduction.


Assuntos
Haemophilus parasuis , Percepção de Quorum , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Haemophilus parasuis/genética , Haemophilus parasuis/metabolismo , Purinas , Percepção de Quorum/genética
18.
PeerJ ; 10: e13648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769141

RESUMO

The widespread two-component system (TCS), QseBC, involves vital virulence regulators in Enterobacteriaceae and Pasteurellaceae. Here we studied the function of QseBC in Glaesserella parasuis. A ΔqseBC mutant was constructed using a Glaesserella parasuis serovar 11 clinical strain SC1401 by natural transformation. Immunofluorescence was used to evaluate cellular adhesion, the levels of inflammation and apoptosis. The ability of ΔqseBC and ΔqseC mutant strains to adhere to PAM and MLE-12 cells was significantly reduced. Additionally, by focusing on the clinical signs, H&E, and IFA for inflammation and apoptosis, we found that the ΔqseBC mutant weakened virulence in the murine models. Together, these findings suggest that QseBC plays an important role in the virulence of Glaesserella parasuis.


Assuntos
Enterobacteriaceae , Inflamação , Animais , Camundongos , Virulência/genética
19.
Comput Struct Biotechnol J ; 20: 3493-3502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860404

RESUMO

Members of the family Iridoviridae (iridovirids) are globally distributed and trigger adverse economic and ecological impacts on aquaculture and wildlife. Iridovirids taxonomy has previously been studied based on a limited number of genomes, but this is not suitable for the current and future virological studies as more iridovirids are emerging. In our study, 57 representative iridovirids genomes were selected from a total of 179 whole genomes available on NCBI. Then 18 core genes were screened out for members of the family Iridoviridae. Average amino acid sequence identity (AAI) analysis indicated that a cut-off value of 70% is more suitable for the current iridovirids genome database than ICTV-defined 50% threshold to better clarify viral genus boundaries. In addition, more subgroups were divided at genus level with the AAI threshold of 70%. This observation was further confirmed by genomic synteny analysis, codon usage preference analysis, genome GC content and length analysis, and phylogenic analysis. According to the pairwise comparison analysis of core genes, 9 hallmark genes were screened out to conduct preliminary identification and investigation at the genus level of iridovirids in a more convenient and economical manner.

20.
Virus Evol ; 8(1): veac031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646390

RESUMO

Average nucleotide identity (ANI) is a prominent approach for rapidly classifying archaea and bacteria by recruiting both whole genomic sequences and draft assemblies. To evaluate the feasibility of ANI in virus taxon demarcation, 685 poxviruses were assessed. Prior to the analysis, the fragment length and threshold of the ANI value were optimized as 200 bp and 98 per cent, respectively. After ANI analysis and network visualization, the resulting sixty-one species (ANI species rank) were clustered and largely consistent with the groupings found in National Center for Biotechnology Information Virus [within the International Committee on Taxonomy of Viruses (ICTV) Master Species List]. The species identities of thirty-four other poxviruses (excluded by the ICTV Master Species List) were also identified. Subsequent phylogenetic analysis and Guanine-Cytosine (GC) content comparison done were found to support the ANI analysis. Finally, the BLAST identity of concatenated sequences from previously identified core genes showed 91.8 per cent congruence with ANI analysis at the species rank, thus showing potential as a marker gene for poxviruses classification. Collectively, our results reveal that the ANI analysis may serve as a novel and efficient method for poxviruses demarcation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA